BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15711809)

  • 1. Test of molecular dynamics force fields in gramicidin A.
    Bastug T; Kuyucak S
    Eur Biophys J; 2005 Jul; 34(5):377-82. PubMed ID: 15711809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T; Gray-Weale A; Patra SM; Kuyucak S
    Biophys J; 2006 Apr; 90(7):2285-96. PubMed ID: 16415054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gramicidin A channel as a test ground for molecular dynamics force fields.
    Allen TW; Baştuğ T; Kuyucak S; Chung SH
    Biophys J; 2003 Apr; 84(4):2159-68. PubMed ID: 12668425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of gramicidin A in a lipid bilayer: from structure-function relations to force fields.
    Baştuğ T; Patra SM; Kuyucak S
    Chem Phys Lipids; 2006 Jun; 141(1-2):197-204. PubMed ID: 16600199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields.
    Allen TW; Andersen OS; Roux B
    Biophys J; 2006 May; 90(10):3447-68. PubMed ID: 16500984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations.
    Baştuğ T; Kuyucak S
    Biophys J; 2006 Jun; 90(11):3941-50. PubMed ID: 16533834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and computational models of biological ion channels.
    Roux B; Allen T; Bernèche S; Im W
    Q Rev Biophys; 2004 Feb; 37(1):15-103. PubMed ID: 17390604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
    Edwards S; Corry B; Kuyucak S; Chung SH
    Biophys J; 2002 Sep; 83(3):1348-60. PubMed ID: 12202360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents.
    Cole CD; Frost AS; Thompson N; Cotten M; Cross TA; Busath DD
    Biophys J; 2002 Oct; 83(4):1974-86. PubMed ID: 12324416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels.
    Allen TW; Andersen OS; Roux B
    Biophys Chem; 2006 Dec; 124(3):251-67. PubMed ID: 16781050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.
    Corry B; Chung SH
    Eur Biophys J; 2005 May; 34(3):208-16. PubMed ID: 15536565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Evaluation of Ion Conductivity of the Gramicidin A Channel Using a Polarizable Force Field without Any Corrections.
    Peng X; Zhang Y; Chu H; Li Y; Zhang D; Cao L; Li G
    J Chem Theory Comput; 2016 Jun; 12(6):2973-82. PubMed ID: 27171823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gramicidin D conformation, dynamics and membrane ion transport.
    Burkhart BM; Gassman RM; Langs DA; Pangborn WA; Duax WL; Pletnev V
    Biopolymers; 1999; 51(2):129-44. PubMed ID: 10397797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low free energy barrier for ion permeation through double-helical gramicidin.
    Siu SW; Böckmann RA
    J Phys Chem B; 2009 Mar; 113(10):3195-202. PubMed ID: 19708166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge equilibration force fields for lipid environments: applications to fully hydrated DPPC bilayers and DMPC-embedded gramicidin A.
    Davis JE; Patel S
    J Phys Chem B; 2009 Jul; 113(27):9183-96. PubMed ID: 19526999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric field effects on membranes: gramicidin A as a test ground.
    Siu SW; Böckmann RA
    J Struct Biol; 2007 Mar; 157(3):545-56. PubMed ID: 17116406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of ion conduction through the gramicidin channel.
    Allen TW; Andersen OS; Roux B
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):117-22. PubMed ID: 14691245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of K+ permeability through Gramicidin A by forward-reverse steered molecular dynamics.
    De Fabritiis G; Coveney PV; Villà-Freixa J
    Proteins; 2008 Oct; 73(1):185-94. PubMed ID: 18412256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.