These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15711878)

  • 1. Conformational study of spectrin in presence of submolar concentrations of denaturants.
    Ray S; Bhattacharyya M; Chakrabarti A
    J Fluoresc; 2005 Jan; 15(1):61-70. PubMed ID: 15711878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization and dynamics of tryptophan residues in brain spectrin: novel insight into conformational flexibility.
    Mitra M; Chaudhuri A; Patra M; Mukhopadhyay C; Chakrabarti A; Chattopadhyay A
    J Fluoresc; 2015 May; 25(3):707-17. PubMed ID: 25835748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural perturbation of proteins in low denaturant concentrations.
    Basak S; Debnath D; Haque E; Ray S; Chakrabarti A
    Indian J Biochem Biophys; 2001; 38(1-2):84-9. PubMed ID: 11563338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence of spectrin-bound prodan.
    Chakrabarti A
    Biochem Biophys Res Commun; 1996 Sep; 226(2):495-7. PubMed ID: 8806662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural alterations of horseradish peroxidase in the presence of low concentrations of guanidinium chloride.
    Chakrabarti A; Basak S
    Eur J Biochem; 1996 Oct; 241(2):462-7. PubMed ID: 8917443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride.
    Patra M; Mukhopadhyay C; Chakrabarti A
    PLoS One; 2015; 10(1):e0116991. PubMed ID: 25617632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin.
    Bhattacharyya M; Ray S; Bhattacharya S; Chakrabarti A
    J Biol Chem; 2004 Dec; 279(53):55080-8. PubMed ID: 15492010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach.
    Chattopadhyay A; Rawat SS; Kelkar DA; Ray S; Chakrabarti A
    Protein Sci; 2003 Nov; 12(11):2389-403. PubMed ID: 14573853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence studies of spectrin and its subunits.
    Subbarao NK; MacDonald RC
    Cell Motil Cytoskeleton; 1994; 29(1):72-81. PubMed ID: 7820859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial relationship between the prodan site, Trp-214, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding.
    Krishnakumar SS; Panda D
    Biochemistry; 2002 Jun; 41(23):7443-52. PubMed ID: 12044178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of polarity-sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies.
    Patra M; Mitra M; Chakrabarti A; Mukhopadhyay C
    J Biomol Struct Dyn; 2014; 32(6):852-65. PubMed ID: 24404769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DNA-binding antitumor antibiotic binds to spectrin.
    Majee S; Chakrabarti A
    Biochem Biophys Res Commun; 1995 Jul; 212(2):428-32. PubMed ID: 7626057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence investigation of the sex steroid binding protein of rabbit serum: steroid binding and subunit dissociation.
    Casali E; Petra PH; Ross JB
    Biochemistry; 1990 Oct; 29(40):9334-43. PubMed ID: 2248950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubulin equilibrium unfolding followed by time-resolved fluorescence and fluorescence correlation spectroscopy.
    Sánchez SA; Brunet JE; Jameson DM; Lagos R; Monasterio O
    Protein Sci; 2004 Jan; 13(1):81-8. PubMed ID: 14691224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythroid spectrin in miceller detergents.
    Ray S; Chakrabarti A
    Cell Motil Cytoskeleton; 2003 Jan; 54(1):16-28. PubMed ID: 12451592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach.
    Kelkar DA; Chattopadhyay A; Chakrabarti A; Bhattacharyya M
    Biopolymers; 2005 Apr; 77(6):325-34. PubMed ID: 15648086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessibility of tryptophan residues in Na,K-ATPase.
    Tyson PA; Steinberg M
    J Biol Chem; 1987 Apr; 262(10):4644-8. PubMed ID: 3031029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of either the highly conserved Trp-22 or the moderately conserved Trp-95 to a large, hydrophobic residue reduces the thermodynamic stability of a spectrin repeating unit.
    Pantazatos DP; MacDonald RI
    J Biol Chem; 1997 Aug; 272(34):21052-9. PubMed ID: 9261107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of Prodan for the self-associating domain of spectrin: a molecular docking study.
    Bhattacharya M; Mukhopadhyay C; Chakrabarti A
    J Biomol Struct Dyn; 2006 Dec; 24(3):269-76. PubMed ID: 17054385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorientation Motion and Preferential Interactions of a Peptide in Denaturants and Osmolyte.
    Jas GS; Rentchler EC; Słowicka AM; Hermansen JR; Johnson CK; Middaugh CR; Kuczera K
    J Phys Chem B; 2016 Mar; 120(12):3089-99. PubMed ID: 26967551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.