These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 15711885)

  • 81. Onset of the sliding movement of an actin filament on myosin molecules: from isotropic to anisotropic fluctuations.
    Hatori K; Honda H; Shimada K; Matsuno K
    Biophys Chem; 1999 Nov; 82(1):29-33. PubMed ID: 10584294
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Functional, structural, and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers.
    Prochniewicz E; Lowe DA; Spakowicz DJ; Higgins L; O'Conor K; Thompson LV; Ferrington DA; Thomas DD
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C613-26. PubMed ID: 18003749
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Synthesis of a spin-labeled photoaffinity ATP analogue, and its use to specifically photolabel myosin cross-bridges in skeletal muscle fibers.
    Wang D; Luo Y; Cooke R; Grammer J; Pate E; Yount RG
    J Muscle Res Cell Motil; 1999 Nov; 20(8):743-53. PubMed ID: 10730577
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fraction of myosin cross-bridges bound to actin in active muscle fibers: estimation by fluorescence anisotropy measurements.
    Burghardt TP; Ajtai K
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8478-82. PubMed ID: 3866235
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Dependence of the work done by ATP-induced actin-myosin sliding on the initial baseline force: its implications for kinetic properties of myosin heads in muscle contraction.
    Sugi H; Oiwa K; Chaen S
    Adv Exp Med Biol; 1993; 332():303-9; discussion 310-1. PubMed ID: 8109344
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Physiological Significance of the Force-Velocity Relation in Skeletal Muscle and Muscle Fibers.
    Sugi H; Ohno T
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31238505
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Conformation of the myosin motor during force generation in skeletal muscle.
    Irving M; Piazzesi G; Lucii L; Sun YB; Harford JJ; Dobbie IM; Ferenczi MA; Reconditi M; Lombardi V
    Nat Struct Biol; 2000 Jun; 7(6):482-5. PubMed ID: 10881196
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Towards a unified theory of muscle contraction. I: foundations.
    Smith DA; Geeves MA; Sleep J; Mijailovich SM
    Ann Biomed Eng; 2008 Oct; 36(10):1624-40. PubMed ID: 18642081
    [TBL] [Abstract][Full Text] [Related]  

  • 89. X-ray equatorial diffraction during ATP-induced Ca(2+)-free muscle contraction and the effect of ADP.
    Horiuti K; Yagi N; Kagawa K; Wakabayashi K; Yamada K
    J Biochem; 1994 May; 115(5):953-7. PubMed ID: 7961611
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus.
    Greenberg MJ; Mealy TR; Jones M; Szczesna-Cordary D; Moore JR
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R989-96. PubMed ID: 20089714
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Modification of the bi-directional sliding movement of actin filaments along native thick filaments isolated from a clam.
    West JM; Higuchi H; Ishijima A; Yanagida T
    J Muscle Res Cell Motil; 1996 Dec; 17(6):637-46. PubMed ID: 8994083
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Electron microscopic recording of myosin head power stroke in hydrated myosin filaments.
    Sugi H; Chaen S; Akimoto T; Minoda H; Miyakawa T; Miyauchi Y; Tanokura M; Sugiura S
    Sci Rep; 2015 Oct; 5():15700. PubMed ID: 26498981
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Invited Review: plasticity and energetic demands of contraction in skeletal and cardiac muscle.
    Sieck GC; Regnier M
    J Appl Physiol (1985); 2001 Mar; 90(3):1158-64. PubMed ID: 11181631
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Evidence for the involvement of myosin subfragment 2 in muscle contraction.
    Sugi H; Akimoto T; Kobayashi T
    Adv Exp Med Biol; 2003; 538():317-31; discussion 331-2. PubMed ID: 15098679
    [No Abstract]   [Full Text] [Related]  

  • 95. Muscle contraction: actin filaments enter the fray.
    Molloy JE
    Biophys J; 2005 Jul; 89(1):1-2. PubMed ID: 15849256
    [No Abstract]   [Full Text] [Related]  

  • 96. Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications.
    Sugi H; Chaen S; Akimoto T
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734671
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Calcium regulates scallop muscle by changing myosin flexibility.
    Azzu V; Yadin D; Patel H; Fraternali F; Chantler PD; Molloy JE
    Eur Biophys J; 2006 Apr; 35(4):302-12. PubMed ID: 16404592
    [TBL] [Abstract][Full Text] [Related]  

  • 98. An X-ray diffraction study on a single frog skinned muscle fiber in the presence of vanadate.
    Takemori S; Yamaguchi M; Yagi N
    J Biochem; 1995 Mar; 117(3):603-8. PubMed ID: 7629029
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Dynamic electron microscopy of ATP-induced myosin head movement in living muscle thick filaments.
    Sugi H; Akimoto T; Sutoh K; Chaen S; Oishi N; Suzuki S
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4378-82. PubMed ID: 9113997
    [TBL] [Abstract][Full Text] [Related]  

  • 100. ATP-dependent fluctuations of single actin filaments in vitro.
    Hatori K; Honda H; Matsuno K
    Biophys Chem; 1996 Feb; 58(3):267-72. PubMed ID: 8820411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.