BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15711940)

  • 21. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation.
    Fialová A; Cejková A; Masák J; Jirků V
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):155-8. PubMed ID: 15296151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Degradation of 2,4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1].
    Kitova AE; Kuvichkina TN; Arinbasarova AIu; Reshetilov AN
    Prikl Biokhim Mikrobiol; 2004; 40(3):307-11. PubMed ID: 15283333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioremediation of halogenated compounds: comparison of dehalogenating bacteria and improvement of catalyst stability.
    Erable B; Goubet I; Lamare S; Legoy MD; Maugard T
    Chemosphere; 2006 Nov; 65(7):1146-52. PubMed ID: 16723151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14.
    de Carvalho CC; da Fonseca MM
    FEMS Microbiol Ecol; 2005 Feb; 51(3):389-99. PubMed ID: 16329886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells.
    Naito M; Kawamoto T; Fujino K; Kobayashi M; Maruhashi K; Tanaka A
    Appl Microbiol Biotechnol; 2001 Apr; 55(3):374-8. PubMed ID: 11341322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodesulfurization.
    McFarland BL
    Curr Opin Microbiol; 1999 Jun; 2(3):257-64. PubMed ID: 10383871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3-Keto-5alpha-steroid Delta(1)-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism.
    Knol J; Bodewits K; Hessels GI; Dijkhuizen L; van der Geize R
    Biochem J; 2008 Mar; 410(2):339-46. PubMed ID: 18031290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions.
    de Carvalho CC
    Res Microbiol; 2012 Feb; 163(2):125-36. PubMed ID: 22146587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis].
    Zhukov DV; Murygina VP; Kaliuzhnyĭ SV
    Prikl Biokhim Mikrobiol; 2007; 43(6):657-63. PubMed ID: 18173107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Progress of biodesulfurization].
    Qiu J; Di J; Li Y
    Wei Sheng Wu Xue Bao; 2001 Oct; 41(5):650-3. PubMed ID: 12552818
    [No Abstract]   [Full Text] [Related]  

  • 31. Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis.
    Huang L; Ma T; Li D; Liang FL; Liu RL; Li GQ
    Mar Pollut Bull; 2008 Oct; 56(10):1714-8. PubMed ID: 18778839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrile hydrolysis activity of Rhodococcus erythropolis NCIMB 11540 whole cells.
    Vink MK; Wijtmans R; Reisinger C; van den Berg RJ; Schortinghuis CA; Schwab H; Schoemaker HE; Rutjes FP
    Biotechnol J; 2006 May; 1(5):569-73. PubMed ID: 16892293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodesulphurization of gasoline by Rhodococcus erythropolis supported on polyvinyl alcohol.
    Fatahi A; Sadeghi S
    Lett Appl Microbiol; 2017 May; 64(5):370-378. PubMed ID: 28266721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global transcriptomic analysis of Rhodococcus erythropolis D310-1 in responding to chlorimuron-ethyl.
    Cheng Y; Zang H; Wang H; Li D; Li C
    Ecotoxicol Environ Saf; 2018 Aug; 157():111-120. PubMed ID: 29614448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Catalase activity of hydrocarbon-oxidizing bacteria].
    Gogoleva OA; Nemtseva NV; Bukharin OV
    Prikl Biokhim Mikrobiol; 2012; 48(6):612-7. PubMed ID: 23330387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atrazine degradation by encapsulated Rhodococcus erythropolis NI86/21.
    Vancov T; Jury K; Van Zwieten L
    J Appl Microbiol; 2005; 99(4):767-75. PubMed ID: 16162227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis.
    Angelova B; Avramova T; Stefanova L; Mutafov S
    Biodegradation; 2008 Jun; 19(3):387-93. PubMed ID: 17653820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.
    Soleimani M; Bassi A; Margaritis A
    Biotechnol Adv; 2007; 25(6):570-96. PubMed ID: 17716849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Statistical optimization for production of chitin deacetylase from Rhodococcus erythropolis HG05.
    Sun Y; Zhang J; Wu S; Wang S
    Carbohydr Polym; 2014 Feb; 102():649-52. PubMed ID: 24507331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of vitreoscilla hemoglobin.
    Xiong X; Xing J; Li X; Bai X; Li W; Li Y; Liu H
    Appl Environ Microbiol; 2007 Apr; 73(7):2394-7. PubMed ID: 17293512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.