BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15711968)

  • 1. Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae).
    Williams GA; Calderone JB; Jacobs GH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Feb; 191(2):125-34. PubMed ID: 15711968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, Octodontidae).
    Peichl L; Chavez AE; Ocampo A; Mena W; Bozinovic F; Palacios AG
    J Comp Neurol; 2005 Jun; 486(3):197-208. PubMed ID: 15844175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse.
    Jacobs GH; Williams GA; Fenwick JA
    Vision Res; 2004; 44(14):1615-22. PubMed ID: 15135998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish.
    Cheng CL; Flamarique IN; Hárosi FI; Rickers-Haunerland J; Haunerland NH
    J Comp Neurol; 2006 Mar; 495(2):213-35. PubMed ID: 16435286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual adaptations in a diurnal rodent, Octodon degus.
    Jacobs GH; Calderone JB; Fenwick JA; Krogh K; Williams GA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 May; 189(5):347-61. PubMed ID: 12679876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Ctenomys): morphology, topography, and spectral sensitivity.
    Schleich CE; Vielma A; Glösmann M; Palacios AG; Peichl L
    J Comp Neurol; 2010 Oct; 518(19):4001-15. PubMed ID: 20737597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV- and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments.
    Lyubarsky AL; Falsini B; Pennesi ME; Valentini P; Pugh EN
    J Neurosci; 1999 Jan; 19(1):442-55. PubMed ID: 9870972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae).
    Peichl L; Nemec P; Burda H
    Eur J Neurosci; 2004 Mar; 19(6):1545-58. PubMed ID: 15066151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839).
    Palacios AG; Bozinovic F; Vielma A; Arrese CA; Hunt DM; Peichl L
    J Comp Neurol; 2010 May; 518(9):1589-602. PubMed ID: 20187149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of modified chromophores on the spectral sensitivity of salamander, squirrel and macaque cones.
    Makino CL; Kraft TW; Mathies RA; Lugtenburg J; Miley ME; van der Steen R; Baylor DA
    J Physiol; 1990 May; 424():545-60. PubMed ID: 2391661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory adaptations in burrowing pocket gophers from sea level and high altitude.
    Lechner AJ
    J Appl Physiol; 1976 Aug; 41(2):168-73. PubMed ID: 8420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Adapto-electroretinographic study of regeneration of the visual pigments in the fauve de Bourgogne and albino rabbit after photobleaching with monochromatic light].
    Coulangeon LM; Guyot G; Sole P; Lemaire J; Nhamias S; Giraud JM
    J Fr Ophtalmol; 1983; 6(8-9):677-87. PubMed ID: 6677658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogenic retinal changes in three ecologically distinct elopomorph fishes (Elopomorpha:Teleostei) correlate with light environment and behavior.
    Taylor SM; Loew ER; Grace MS
    Vis Neurosci; 2015 Jan; 32():E005. PubMed ID: 26241034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterisation of the chromatically antagonistic photosensitive mechanism of erythrophores in the tilapia Oreochromis niloticus.
    Chen SC; Xiao C; Troje NF; Robertson RM; Hawryshyn CW
    J Exp Biol; 2015 Mar; 218(Pt 5):748-56. PubMed ID: 25573822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological adaptations for digging and climate-impacted soil properties define pocket gopher (Thomomys spp.) distributions.
    Marcy AE; Fendorf S; Patton JL; Hadly EA
    PLoS One; 2013; 8(5):e64935. PubMed ID: 23717675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria.
    Schmeling F; Wakakuwa M; Tegtmeier J; Kinoshita M; Bockhorst T; Arikawa K; Homberg U
    J Exp Biol; 2014 Oct; 217(Pt 19):3557-68. PubMed ID: 25104757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal shifts in visual pigment absorbance in the retina of Pacific salmon.
    Flamarique IN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):37-49. PubMed ID: 15549325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tuning of human photopigments may minimize red-green chromatic signals in natural conditions.
    Nagle MG; Osorio D
    Proc Biol Sci; 1993 Jun; 252(1335):209-13. PubMed ID: 8394581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.
    Heikkinen H; Nymark S; Donner K; Koskelainen A
    Vision Res; 2009 Jul; 49(14):1717-28. PubMed ID: 19348836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.