These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15712112)

  • 1. Markedly reduced evolutionary rates of transcription factors and cytoplasmic ribosomal RNAs and proteins in higher vertebrates and their evolutionary implications.
    Hoshiyama D; Kuma K; Miyata T
    Genome Inform; 2004; 15(1):82-92. PubMed ID: 15712112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary rate variation among vertebrate beta globin genes: implications for dating gene family duplication events.
    Aguileta G; Bielawski JP; Yang Z
    Gene; 2006 Sep; 380(1):21-9. PubMed ID: 16843621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Lineage-specific expansions and contractions of the bitter taste receptor gene repertoire in vertebrates.
    Go Y;
    Mol Biol Evol; 2006 May; 23(5):964-72. PubMed ID: 16484289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lineage-specific base-pair contents in the stem regions of ribosomal RNAs and their influence on the estimation of evolutionary distances.
    Sugaya N; Otsuka J
    J Mol Evol; 2002 Nov; 55(5):584-94. PubMed ID: 12399932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uneven evolutionary rates of bradykinin B1 and B2 receptors in vertebrate lineages.
    Bromée T; Venkatesh B; Brenner S; Postlethwait JH; Yan YL; Larhammar D
    Gene; 2006 May; 373():100-8. PubMed ID: 16530355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire.
    Eckhart L; Ballaun C; Hermann M; VandeBerg JL; Sipos W; Uthman A; Fischer H; Tschachler E
    Mol Biol Evol; 2008 May; 25(5):831-41. PubMed ID: 18281271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two rounds of whole genome duplication in the ancestral vertebrate.
    Dehal P; Boore JL
    PLoS Biol; 2005 Oct; 3(10):e314. PubMed ID: 16128622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous expansions of microRNAs and protein-coding genes by gene/genome duplications in early vertebrates.
    Gu X; Su Z; Huang Y
    J Exp Zool B Mol Dev Evol; 2009 May; 312B(3):164-70. PubMed ID: 19214983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and functional divergence of monocarboxylate transporter genes in vertebrates.
    Liu Q; Dou S; Wang G; Li Z; Feng Y
    Gene; 2008 Oct; 423(1):14-22. PubMed ID: 18674605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock.
    Pereira SL; Baker AJ
    Mol Biol Evol; 2006 Sep; 23(9):1731-40. PubMed ID: 16774978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The "inverse relationship between evolutionary rate and age of mammalian genes" is an artifact of increased genetic distance with rate of evolution and time of divergence.
    Elhaik E; Sabath N; Graur D
    Mol Biol Evol; 2006 Jan; 23(1):1-3. PubMed ID: 16151190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts.
    Yu WP; Yew K; Rajasegaran V; Venkatesh B
    BMC Evol Biol; 2007 Mar; 7():49. PubMed ID: 17394664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the exon-intron structures of fish, amphibian, bird and mammalian hatching enzyme genes, with special reference to the intron loss evolution of hatching enzyme genes in Teleostei.
    Kawaguchi M; Yasumasu S; Hiroi J; Naruse K; Suzuki T; Iuchi I
    Gene; 2007 May; 392(1-2):77-88. PubMed ID: 17222522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable patterns in the molecular evolution of the hypoxia-inducible factor-1 alpha (HIF-1alpha) gene in teleost fishes and mammals.
    Rytkönen KT; Ryynänen HJ; Nikinmaa M; Primmer CR
    Gene; 2008 Aug; 420(1):1-10. PubMed ID: 18565696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eukaryotic nuclear structure explains the evolutionary rate difference of ribosome export factors.
    Ohyanagi H; Ikeo K; Gojobori T
    Gene; 2008 Sep; 421(1-2):7-13. PubMed ID: 18588954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny, taxonomy, and evolution of the endothelin receptor gene family.
    Hyndman KA; Miyamoto MM; Evans DH
    Mol Phylogenet Evol; 2009 Sep; 52(3):677-87. PubMed ID: 19410007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolutionary analyses of the Arabidopsis L7 ribosomal protein gene family.
    Barakat A; Müller KF; Sáenz-de-Miera LE
    Gene; 2007 Nov; 403(1-2):143-50. PubMed ID: 17889453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the genomic rate of recombination in mammals.
    Dumont BL; Payseur BA
    Evolution; 2008 Feb; 62(2):276-94. PubMed ID: 18067567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Variation of loci encoding homologous enzymes in an evolutionary series of vertebrates].
    Mezhzherin SV
    Genetika; 2002 Oct; 38(10):1379-86. PubMed ID: 12449648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revaluation of deuterostome phylogeny and evolutionary relationships among chordate subphyla using mitogenome data.
    Zhong J; Zhang J; Mukwaya E; Wang Y
    J Genet Genomics; 2009 Mar; 36(3):151-60. PubMed ID: 19302971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.