These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 15712301)
21. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. Shigematsu T; Takamine K; Kitazato M; Morita T; Naritomi T; Morimura S; Kida K J Biosci Bioeng; 2005 Apr; 99(4):415-22. PubMed ID: 16233811 [TBL] [Abstract][Full Text] [Related]
22. Factors affecting the yield and properties of bacterial cellulose. Krystynowicz A; Czaja W; Wiktorowska-Jezierska A; Gonçalves-Miśkiewicz M; Turkiewicz M; Bielecki S J Ind Microbiol Biotechnol; 2002 Oct; 29(4):189-95. PubMed ID: 12355318 [TBL] [Abstract][Full Text] [Related]
23. Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Chao Y; Ishida T; Sugano Y; Shoda M Biotechnol Bioeng; 2000 May; 68(3):345-52. PubMed ID: 10745203 [TBL] [Abstract][Full Text] [Related]
24. Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Bae SO; Sugano Y; Ohi K; Shoda M Appl Microbiol Biotechnol; 2004 Aug; 65(3):315-22. PubMed ID: 15042328 [TBL] [Abstract][Full Text] [Related]
25. Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Seto A; Saito Y; Matsushige M; Kobayashi H; Sasaki Y; Tonouchi N; Tsuchida T; Yoshinaga F; Ueda K; Beppu T Appl Microbiol Biotechnol; 2006 Dec; 73(4):915-21. PubMed ID: 17093989 [TBL] [Abstract][Full Text] [Related]
26. Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Cheng KC; Catchmark JM; Demirci A Biomacromolecules; 2011 Mar; 12(3):730-6. PubMed ID: 21250667 [TBL] [Abstract][Full Text] [Related]
27. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus. Huang C; Yang XY; Xiong L; Guo HJ; Luo J; Wang B; Zhang HR; Lin XQ; Chen XD Appl Biochem Biotechnol; 2015 Feb; 175(3):1678-88. PubMed ID: 25422061 [TBL] [Abstract][Full Text] [Related]
28. Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology: the case of human interferon beta. Maldonado LM; Hernández VE; Rivero EM; Barba de la Rosa AP; Flores JL; Acevedo LG; De León Rodríguez A Biomol Eng; 2007 Jun; 24(2):217-22. PubMed ID: 17126075 [TBL] [Abstract][Full Text] [Related]
29. Optimization of culture medium for the production of phenyllactic acid by Lactobacillus sp. SK007. Mu W; Chen C; Li X; Zhang T; Jiang B Bioresour Technol; 2009 Feb; 100(3):1366-70. PubMed ID: 18793844 [TBL] [Abstract][Full Text] [Related]
30. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology. Venkata Mohan S; Chandrasekhara Rao N; Krishna Prasad K; Murali Krishna P; Sreenivas Rao R; Sarma PN Biotechnol Bioeng; 2005 Jun; 90(6):732-45. PubMed ID: 15812798 [TBL] [Abstract][Full Text] [Related]
31. Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Hyun JY; Mahanty B; Kim CG Appl Biochem Biotechnol; 2014 Apr; 172(8):3748-60. PubMed ID: 24569910 [TBL] [Abstract][Full Text] [Related]
32. Compactin production studies using Penicillium brevicompactum under solid-state fermentation conditions. Shaligram NS; Singh SK; Singhal RS; Pandey A; Szakacs G Appl Biochem Biotechnol; 2009 Nov; 159(2):505-20. PubMed ID: 19099208 [TBL] [Abstract][Full Text] [Related]
33. Optimization of growth media for obtaining high-cell density cultures of halophilic archaea (family Halobacteriaceae) by response surface methodology. Manikandan M; Pasić L; Kannan V Bioresour Technol; 2009 Jun; 100(12):3107-12. PubMed ID: 19243935 [TBL] [Abstract][Full Text] [Related]
34. Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor. Chao Y; Sugano Y; Shoda M Appl Microbiol Biotechnol; 2001 Jun; 55(6):673-9. PubMed ID: 11525613 [TBL] [Abstract][Full Text] [Related]
35. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Mikkelsen D; Flanagan BM; Dykes GA; Gidley MJ J Appl Microbiol; 2009 Aug; 107(2):576-83. PubMed ID: 19302295 [TBL] [Abstract][Full Text] [Related]
36. Real-time update of calibration model for better monitoring of batch processes using spectroscopy. Kornmann H; Valentinotti S; Marison I; von Stockar U Biotechnol Bioeng; 2004 Sep; 87(5):593-601. PubMed ID: 15352057 [TBL] [Abstract][Full Text] [Related]
37. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Keshk SM Carbohydr Polym; 2014 Jan; 99():98-100. PubMed ID: 24274484 [TBL] [Abstract][Full Text] [Related]
38. Medium optimization for the production of cyclic adenosine 3',5'-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Chen XC; Bai JX; Cao JM; Li ZJ; Xiong J; Zhang L; Hong Y; Ying HJ Bioresour Technol; 2009 Jan; 100(2):919-24. PubMed ID: 18778935 [TBL] [Abstract][Full Text] [Related]
39. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Lee KY; Buldum G; Mantalaris A; Bismarck A Macromol Biosci; 2014 Jan; 14(1):10-32. PubMed ID: 23897676 [TBL] [Abstract][Full Text] [Related]
40. Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor. Kim YJ; Kim JN; Wee YJ; Park DH; Ryu HW Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):529-37. PubMed ID: 18478414 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]