BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15712955)

  • 1. [Separation of aromatic amines by capillary zone electrophoresis with lower electroosmotic flow].
    Huang F; Ye S
    Se Pu; 2004 Jan; 22(1):77-80. PubMed ID: 15712955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmotic control of chiral separation in capillary zone electrophoresis.
    Hong S; Lee CS
    Electrophoresis; 1995 Nov; 16(11):2132-6. PubMed ID: 8748745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary zone electrophoresis with electroosmotic flow controlled by external radial electric field.
    Kasicka V; Prusík Z; Sázelová ; Brynda E; Stejskal J
    Electrophoresis; 1999 Sep; 20(12):2484-92. PubMed ID: 10499341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moderation of the electroosmotic flow in capillary electrophoresis by chemical modification of the capillary surface with tentacle-like oligourethanes.
    König S; Welsch T
    J Chromatogr A; 2000 Oct; 894(1-2):79-88. PubMed ID: 11100850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmotic flow controllable coating on a capillary surface by a sol-gel process for capillary electrophoresis.
    Hsieh YY; Lin YH; Yang JS; Wei GT; Tien P; Chau LK
    J Chromatogr A; 2002 Apr; 952(1-2):255-66. PubMed ID: 12064537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary zone electrophoresis of glycopeptides under controlled electroosmotic flow conditions coupled to electrospray and matrix-assisted laser desorption/ionization mass spectrometry.
    Amon S; Plematl A; Rizzi A
    Electrophoresis; 2006 Mar; 27(5-6):1209-19. PubMed ID: 16523459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Success and failure with phthalate buffers in capillary zone electrophoresis.
    Bocek P; Gebauer P; Beckers JL
    Electrophoresis; 2001 Apr; 22(6):1106-11. PubMed ID: 11358134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace analysis of oxidized, nitrated, and chlorinated aromatic amino acids by capillary electrophoresis with electroosmotic flow modification allowing large-volume sample stacking.
    Tábi T; Magyar K; Szöko E
    Electrophoresis; 2005 May; 26(10):1940-7. PubMed ID: 15818575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of aromatic amines in water samples by capillary electrophoresis with amperometric detection.
    Sun Y; Liang L; Zhao X; Yu L; Zhang J; Shi G; Zhou T
    Water Res; 2009 Jan; 43(1):41-6. PubMed ID: 18986668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of amino acids and amines by capillary electrophoresis using poly(ethylene oxide) solution containing cetyltrimethylammonium bromide.
    Chen CK; Liu KT; Chiu TC; Chang HT
    J Chromatogr A; 2009 Oct; 1216(44):7576-81. PubMed ID: 19268952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CZE study on adsorption processes of aliphatic and aromatic amines on PMMA chip.
    Masár M; Kruk P; Luc M; Bodor R; Danč L; Troška P
    Electrophoresis; 2013 Feb; 34(3):432-40. PubMed ID: 23151975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary.
    Kaneta T; Ueda T; Hata K; Imasaka T
    J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of halides on the simultaneous separation of aromatic amines and their acidic metabolites by capillary electrophoresis with laser-induced native fluorescence detection under acidic conditions.
    Hsieh MM; Chang HT
    J Chromatogr A; 2006 Jan; 1102(1-2):302-8. PubMed ID: 16325830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large volume sample stacking of positively chargeable analytes in capillary zone electrophoresis without polarity switching: use of low reversed electroosmotic flow induced by a cationic surfactant at acidic pH.
    Quirino JP; Terabe S
    Electrophoresis; 2000 Jan; 21(2):355-9. PubMed ID: 10675015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative capillary zone electrophoresis method for the precise determination of charge differences arising from the manufacture of heparan-N-sulfatase.
    Roseman DS; Weinberger R
    J Pharm Biomed Anal; 2013 Nov; 85():67-73. PubMed ID: 23917036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic flow and electroosmotic flow in zirconia-packed capillaries.
    Crosnier de Bellaistre M; Randon J; Rocca JL
    Electrophoresis; 2006 Feb; 27(4):736-41. PubMed ID: 16470622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary electrophoresis chiral separations of basic compounds using cationic cyclodextrin.
    Wang F; Khaledi MG
    Electrophoresis; 1998 Sep; 19(12):2095-100. PubMed ID: 9761187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantiomeric separation by capillary electrophoresis with an electroosmotic flow-controlled capillary.
    Katayama H; Ishihama Y; Asakawa N
    J Chromatogr A; 2000 Apr; 875(1-2):315-22. PubMed ID: 10839151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary electrophoretic separation of 1 to 10 kbp sized dsDNA using poly(ethylene oxide) solutions in the presence of electroosmotic counterflow.
    Chen HS; Chang HT
    Electrophoresis; 1998 Dec; 19(18):3149-53. PubMed ID: 9932807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolytically stable amino-silica glass coating material for manipulation of the electroosmotic flow in capillary electrophoresis.
    Guo Y; Imahori GA; Colón LA
    J Chromatogr A; 1996 Sep; 744(1-2):17-29. PubMed ID: 8843661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.