These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15713095)

  • 1. Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange.
    Woehrle GH; Brown LO; Hutchison JE
    J Am Chem Soc; 2005 Feb; 127(7):2172-83. PubMed ID: 15713095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-functionalized undecagold clusters by ligand exchange: synthesis, mechanism, and properties.
    Woehrle GH; Hutchison JE
    Inorg Chem; 2005 Sep; 44(18):6149-58. PubMed ID: 16124791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte salts as ligand precursors.
    Lohse SE; Dahl JA; Hutchison JE
    Langmuir; 2010 May; 26(10):7504-11. PubMed ID: 20180591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step synthesis of phosphine-stabilized gold nanoparticles using the mild reducing agent 9-BBN.
    Shem PM; Sardar R; Shumaker-Parry JS
    Langmuir; 2009 Dec; 25(23):13279-83. PubMed ID: 19891468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water.
    Sardar R; Park JW; Shumaker-Parry JS
    Langmuir; 2007 Nov; 23(23):11883-9. PubMed ID: 17918982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling transport and chemical functionality of magnetic nanoparticles.
    Latham AH; Williams ME
    Acc Chem Res; 2008 Mar; 41(3):411-20. PubMed ID: 18251514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New method for facile synthesis of amphiphilic thiol-stabilized ruthenium nanoparticles and their redox-active ruthenium nanocomposite.
    Tsukatani T; Fujihara H
    Langmuir; 2005 Dec; 21(26):12093-5. PubMed ID: 16342978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral inversion of gold nanoparticles.
    Gautier C; Bürgi T
    J Am Chem Soc; 2008 Jun; 130(22):7077-84. PubMed ID: 18459786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of 4-(dimethylamino)pyridine as a capping agent for gold nanoparticles.
    Gandubert VJ; Lennox RB
    Langmuir; 2005 Jul; 21(14):6532-9. PubMed ID: 15982063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expeditious synthesis of water-soluble, monolayer-protected gold nanoparticles of controlled size and monolayer composition.
    Manea F; Bindoli C; Polizzi S; Lay L; Scrimin P
    Langmuir; 2008 Apr; 24(8):4120-4. PubMed ID: 18341363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-soluble surface-anchored gold and palladium nanoparticles stabilized by exchange of low molecular weight ligands with biamphiphilic triblock copolymers.
    Azzam T; Bronstein L; Eisenberg A
    Langmuir; 2008 Jun; 24(13):6521-9. PubMed ID: 18484759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings.
    Häkkinen H; Walter M; Grönbeck H
    J Phys Chem B; 2006 May; 110(20):9927-31. PubMed ID: 16706449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of triphenylphosphine with phenylethanethiolate-protected Au38 nanoparticles.
    Wang W; Murray RW
    Langmuir; 2005 Jul; 21(15):7015-22. PubMed ID: 16008417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking.
    Luo S; Xu J; Zhang Y; Liu S; Wu C
    J Phys Chem B; 2005 Dec; 109(47):22159-66. PubMed ID: 16853883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes.
    Zanella R; Basiuk EV; Santiago P; Basiuk VA; Mireles E; Puente-Lee I; Saniger JM
    J Phys Chem B; 2005 Sep; 109(34):16290-5. PubMed ID: 16853071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid phosphine exchange on 1.5-nm gold nanoparticles.
    Petroski J; Chou MH; Creutz C
    Inorg Chem; 2004 Mar; 43(5):1597-9. PubMed ID: 14989649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles with perfluorothiolate ligands.
    Dass A; Guo R; Tracy JB; Balasubramanian R; Douglas AD; Murray RW
    Langmuir; 2008 Jan; 24(1):310-5. PubMed ID: 18052299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution.
    Zhang S; Leem G; Srisombat LO; Lee TR
    J Am Chem Soc; 2008 Jan; 130(1):113-20. PubMed ID: 18072768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed structural examinations of covalently immobilized gold nanoparticles onto hydrogen-terminated silicon surfaces.
    Yamanoi Y; Shirahata N; Yonezawa T; Terasaki N; Yamamoto N; Matsui Y; Nishio K; Masuda H; Ikuhara Y; Nishihara H
    Chemistry; 2005 Dec; 12(1):314-23. PubMed ID: 16208724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water.
    Wang Z; Tan B; Hussain I; Schaeffer N; Wyatt MF; Brust M; Cooper AI
    Langmuir; 2007 Jan; 23(2):885-95. PubMed ID: 17209648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.