BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 15713112)

  • 1. Identity hydride-ion transfer from C-H donors to C acceptor sites. Enthalpies of hydride addition and enthalpies of activation. Comparison with C...H...C proton transfer. An ab initio study.
    Gronert S; Keeffe JR
    J Am Chem Soc; 2005 Feb; 127(7):2324-33. PubMed ID: 15713112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary semiclassical kinetic hydrogen isotope effects in identity carbon-to-carbon proton- and hydride-transfer reactions, an ab initio and DFT computational study.
    Gronert S; Keeffe JR
    J Org Chem; 2006 Aug; 71(16):5959-68. PubMed ID: 16872178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identity proton-transfer reactions from C-H, N-H, and O-H acids. An ab initio, DFT, and CPCM-B3LYP aqueous solvent model study.
    Keeffe JR; Gronert S; Colvin ME; Tran NL
    J Am Chem Soc; 2003 Sep; 125(38):11730-45. PubMed ID: 13129378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the origin of reversible hydrogen activation by phosphine-boranes.
    Rajeev R; Sunoj RB
    Chemistry; 2009 Nov; 15(46):12846-55. PubMed ID: 19839016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between carbene and carbenium stability: ab initio calculations on substituted phenylcarbenes, nonbenzenoid arylcarbenes, heteroatom-substituted carbenes, and the corresponding carbocations and hydrogenation products.
    Gronert S; Keeffe JR; More O'Ferrall RA
    J Org Chem; 2009 Aug; 74(15):5250-9. PubMed ID: 19534543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions.
    Hammes-Schiffer S
    Chemphyschem; 2002 Jan; 3(1):33-42. PubMed ID: 12465474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can hydridic-to-protonic hydrogen bonds catalyze hydride transfers in biological systems?
    Marincean S; Jackson JE
    J Phys Chem A; 2010 Dec; 114(51):13376-80. PubMed ID: 21141894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile.
    Zhu XQ; Zhang MT; Yu A; Wang CH; Cheng JP
    J Am Chem Soc; 2008 Feb; 130(8):2501-16. PubMed ID: 18254624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton transfers from carbon acids activated by pi-acceptors. Changes in intrinsic barriers and transition state imbalances induced by a cyano group. An ab initio study.
    Bernasconi CF; Wenzel PJ
    J Org Chem; 2003 Sep; 68(18):6870-9. PubMed ID: 12946125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The protonation of allene and some heteroallenes, a computational study.
    Gronert S; Keeffe JR
    J Org Chem; 2007 Aug; 72(17):6343-52. PubMed ID: 17655254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.
    Rosokha SV; Kochi JK
    Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the nature of the metal atom on hydrogen bonding and proton transfer to [Cp*MH3(dppe)]: tungsten versus molybdenum.
    Belkova NV; Besora M; Baya M; Dub PA; Epstein LM; Lledós A; Poli R; Revin PO; Shubina ES
    Chemistry; 2008; 14(32):9921-34. PubMed ID: 18810747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic studies and hydride transfer reactions from a rhodium complex to BX3 compounds.
    Mock MT; Potter RG; Camaioni DM; Li J; Dougherty WG; Kassel WS; Twamley B; DuBois DL
    J Am Chem Soc; 2009 Oct; 131(40):14454-65. PubMed ID: 19754124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the gas-phase reactivity of complexed OH+ with halogenated alkanes.
    Adlhart C; Sekiguchi O; Uggerud E
    Chemistry; 2004 Dec; 11(1):152-9. PubMed ID: 15540241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of transition state aromaticity and antiaromaticity on intrinsic barriers of proton transfers in aromatic and antiaromatic heterocyclic systems; an ab initio study.
    Bernasconi CF; Wenzel PJ
    J Org Chem; 2010 Dec; 75(24):8422-34. PubMed ID: 21080690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of (CH...C)- hydrogen bonds in CH(4-n)X(n) (X = F, Cl; n = 0, 1, 2) systems complexed with their homoconjugate and heteroconjugate carbanions.
    Chandra AK; Zeegers-Huyskens T
    J Phys Chem A; 2005 Dec; 109(51):12006-13. PubMed ID: 16366655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bonds with pi and sigma electrons as the multicenter proton acceptors: high level ab initio calculations.
    Grabowski SJ
    J Phys Chem A; 2007 May; 111(17):3387-93. PubMed ID: 17411022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigation of hydrogen bonds between CO and HNF2, H2NF, and HNO.
    Li AY
    J Phys Chem A; 2006 Sep; 110(37):10805-16. PubMed ID: 16970375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding.
    Yuasa J; Yamada S; Fukuzumi S
    J Am Chem Soc; 2008 Apr; 130(17):5808-20. PubMed ID: 18386924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy barriers for the addition of H, *CH3, and *C2H5 to *CH2=CHX [X = H, CH3, OH] and for H-atom addition to RCH=O [R = H, CH3, *C2H5, n-C3H7]: implications for the gas-phase chemistry of enols.
    Simmie JM; Curran HJ
    J Phys Chem A; 2009 Jul; 113(27):7834-45. PubMed ID: 19518123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.