These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15713292)

  • 1. Neural network estimation of balance control during locomotion.
    Hahn ME; Farley AM; Lin V; Chou LS
    J Biomech; 2005 Apr; 38(4):717-24. PubMed ID: 15713292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balance control during stair negotiation in older adults.
    Lee HJ; Chou LS
    J Biomech; 2007; 40(11):2530-6. PubMed ID: 17239890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related reduction in sagittal plane center of mass motion during obstacle crossing.
    Hahn ME; Chou LS
    J Biomech; 2004 Jun; 37(6):837-44. PubMed ID: 15111071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of dynamic stability during gait termination on a slippery surface.
    Oates AR; Patla AE; Frank JS; Greig MA
    J Neurophysiol; 2005 Jan; 93(1):64-70. PubMed ID: 15295010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of estimating isokinetic knee torque using a neural network model.
    Hahn ME
    J Biomech; 2007; 40(5):1107-14. PubMed ID: 16780848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of gait instability using the center of mass and center of pressure inclination angles.
    Lee HJ; Chou LS
    Arch Phys Med Rehabil; 2006 Apr; 87(4):569-75. PubMed ID: 16571399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Center of mass position relative to the ankle during walking: a clinically feasible detection method for gait imbalance.
    Chen CJ; Chou LS
    Gait Posture; 2010 Mar; 31(3):391-3. PubMed ID: 20005113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambulatory center of mass prediction using body accelerations and center of foot pressure.
    Betker AL; Moussavi ZM; Szturm T
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2491-8. PubMed ID: 18990618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between age and measures of balance, strength and gait: linear and non-linear analyses.
    El Haber N; Erbas B; Hill KD; Wark JD
    Clin Sci (Lond); 2008 Jun; 114(12):719-27. PubMed ID: 18092948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of footwear midsole material hardness on dynamic balance control during unexpected gait termination.
    Perry SD; Radtke A; Goodwin CR
    Gait Posture; 2007 Jan; 25(1):94-8. PubMed ID: 16504511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An artificial neural network estimation of gait balance control in the elderly using clinical evaluations.
    Lugade V; Lin V; Farley A; Chou LS
    PLoS One; 2014; 9(5):e97595. PubMed ID: 24836062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining forces and kinematics for calculating consistent centre of mass trajectories.
    Maus HM; Seyfarth A; Grimmer S
    J Exp Biol; 2011 Nov; 214(Pt 21):3511-7. PubMed ID: 21993778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of body segments' parameters estimation models on inverse dynamics solutions during gait.
    Rao G; Amarantini D; Berton E; Favier D
    J Biomech; 2006; 39(8):1531-6. PubMed ID: 15970198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of human locomotion by using an insole measurement system and artificial neural networks.
    Zhang K; Sun M; Lester DK; Pi-Sunyer FX; Boozer CN; Longman RW
    J Biomech; 2005 Nov; 38(11):2276-87. PubMed ID: 16154415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of balance control in humans.
    Winter DA; Patla AE; Frank JS
    Med Prog Technol; 1990 May; 16(1-2):31-51. PubMed ID: 2138696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of step length on young and elderly women's ability to recover balance.
    Hsiao-Wecksler ET; Robinovitch SN
    Clin Biomech (Bristol, Avon); 2007 Jun; 22(5):574-80. PubMed ID: 17391819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating pathological gait patterns via the use of robotic locomotion models.
    Ephanov A; Hurmuzlu Y
    Technol Health Care; 2002; 10(2):135-46. PubMed ID: 12082217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Center of mass location and segment angular orientation of below-knee-amputee and able-bodied children during walking.
    Engsberg JR; Tedford KG; Harder JA
    Arch Phys Med Rehabil; 1992 Dec; 73(12):1163-8. PubMed ID: 1463381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal components of the 3-D gait analysis of community-dwelling middle-aged and elderly Japanese: age- and sex-related differences.
    Doyo W; Kozakai R; Kim HY; Ando F; Shimokata H
    Geriatr Gerontol Int; 2011 Jan; 11(1):39-49. PubMed ID: 20609001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.