These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 15713299)

  • 21. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube.
    Tripathi D; Anwar Bég O
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1648-57. PubMed ID: 25059738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of embryo transport in a closed uterine cavity model.
    Yaniv S; Jaffa AJ; Eytan O; Elad D
    Eur J Obstet Gynecol Reprod Biol; 2009 May; 144 Suppl 1():S50-60. PubMed ID: 19278771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels.
    Dinarvand S
    Comput Methods Biomech Biomed Engin; 2011 Oct; 14(10):853-62. PubMed ID: 21347910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite difference simulations for non-isothermal hydromagnetic peristaltic flow of a bio-fluid in a curved channel: Applications to physiological systems.
    Ahmed R; Ali N; Al-Khaled K; Khan SU; Tlili I
    Comput Methods Programs Biomed; 2020 Oct; 195():105672. PubMed ID: 32731122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomathematical modelling of physiological fluids using a Casson fluid with emphasis to peristalsis.
    Mernone AV; Mazumdar JN
    Australas Phys Eng Sci Med; 2000 Sep; 23(3):94-100. PubMed ID: 11210160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological analysis of Jeffrey nanofluid in a curved channel with heat dissipation.
    Maraj EN; Akbar NS; Nadeem S
    IEEE Trans Nanobioscience; 2014 Dec; 13(4):431-7. PubMed ID: 25122841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peristaltic transport of a couple stress fluid in a uniform and non-uniform channels.
    Mekheimer KhS
    Biorheology; 2002; 39(6):755-65. PubMed ID: 12454441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peristaltic transport of a particle-fluid suspension.
    Srivastava LM; Srivastava VP
    J Biomech Eng; 1989 May; 111(2):157-65. PubMed ID: 2733411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MHD peristaltic flow of nanofluid in a vertical channel with multiple slip features: an application to chyme movement.
    Vaidya H; Rajashekhar C; Prasad KV; Khan SU; Riaz A; Viharika JU
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1047-1067. PubMed ID: 33656629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peristaltic transport of multilayered power-law fluids with distinct viscosities: a mathematical model for intestinal flows.
    Pandey SK; Chaube MK; Tripathi D
    J Theor Biol; 2011 Jun; 278(1):11-9. PubMed ID: 21377477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peristaltic transport of bi-viscosity fluids through a curved tube: A mathematical model for intestinal flow.
    Tripathi D; Akbar NS; Khan ZH; Bég OA
    Proc Inst Mech Eng H; 2016 Sep; 230(9):817-828. PubMed ID: 30213252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A biomechanical simulation of ureteral flow during peristalsis using intraluminal morphometric data.
    Vahidi B; Fatouraee N
    J Theor Biol; 2012 Apr; 298():42-50. PubMed ID: 22214750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the applicability of the Brinkman equation in soft surface electrokinetics.
    Dukhin SS; Zimmermann R; Duval JF; Werner C
    J Colloid Interface Sci; 2010 Oct; 350(1):1-4. PubMed ID: 20537657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.
    Tiwari A; Chauhan SS
    Microvasc Res; 2019 May; 123():99-110. PubMed ID: 30639139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mathematical framework for peristaltic flow analysis of non-Newtonian Sisko fluid in an undulating porous curved channel with heat and mass transfer effects.
    Asghar Z; Ali N; Ahmed R; Waqas M; Khan WA
    Comput Methods Programs Biomed; 2019 Dec; 182():105040. PubMed ID: 31473445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.
    Noreen S; Qasim M
    PLoS One; 2015; 10(6):e0129588. PubMed ID: 26083027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system.
    Tripathi D; Pandey SK; Siddiqui A; Bég OA
    Comput Methods Biomech Biomed Engin; 2014; 17(6):591-603. PubMed ID: 22817394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The formation of spikes in the displacement of miscible fluids.
    Rashidnia N; Balasubramaniam R; Schroer RT
    Ann N Y Acad Sci; 2004 Nov; 1027():311-6. PubMed ID: 15644364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The exterior unsteady viscous flow and heat transfer due to a porous expanding or contracting cylinder.
    Wang C; Si X; Shen Y; Zheng L; Lin P
    Biomed Mater Eng; 2015; 26 Suppl 1():S279-85. PubMed ID: 26406014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electro-osmotic peristaltic flow and heat transfer in an ionic viscoelastic fluid through a curved micro-channel with viscous dissipation.
    Khan AA; Akram K; Zaman A; Anwar Bég O; Bég TA
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1080-1092. PubMed ID: 35735142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.