BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15713302)

  • 1. A laboratory simulation for morselized bone graft fusion: apparent modulus under operatively based femoral impaction kinetics.
    Heiner AD; Callaghan JJ; Brown TD
    J Biomech; 2005 Apr; 38(4):811-8. PubMed ID: 15713302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness and compactness of morselized grafts during impaction: an in vitro study with human femoral heads.
    Bavadekar A; Cornu O; Godts B; Delloye C; Van Tomme J; Banse X
    Acta Orthop Scand; 2001 Oct; 72(5):470-6. PubMed ID: 11728073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaction bone grafting with hydroxyapatite: increased femoral component stability in experiments using Sawbones.
    Fujishiro T; Nishikawa T; Niikura T; Takikawa S; Nishiyama T; Mizuno K; Yoshiya S; Kurosaka M
    Acta Orthop; 2005 Aug; 76(4):550-4. PubMed ID: 16195073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of fused versus nonfused THA femoral impaction grafts.
    Heiner AD; Callaghan JJ; Brown TD
    J Orthop Res; 2007 Mar; 25(3):351-60. PubMed ID: 17143908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability differentials for proximal vs distal fusion of total hip arthroplasty femoral impaction grafts.
    Heiner AD; Callaghan JJ; Brown TD
    J Arthroplasty; 2008 Sep; 23(6):921-6. PubMed ID: 18534514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physical model for simulating fusion of impaction-grafted morselized cancellous bone.
    Heiner AD; Brown TD
    J Biomech; 2001 Jun; 34(6):811-4. PubMed ID: 11470120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle size influence in an impaction bone grafting model. Comparison of fresh-frozen and freeze-dried allografts.
    Cornu O; Schubert T; Libouton X; Manil O; Godts B; Van Tomme J; Banse X; Delloye C
    J Biomech; 2009 Oct; 42(14):2238-42. PubMed ID: 19656513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Larger bone graft size and washing of bone grafts prior to impaction enhances the initial stability of cemented cups: experiments using a synthetic acetabular model.
    Arts JJ; Verdonschot N; Buma P; Schreurs BW
    Acta Orthop; 2006 Apr; 77(2):227-33. PubMed ID: 16752283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characteristics of impaction allografting for revision total hip arthroplasty.
    Robinson MC; Fernlund G; Dominic Meek RM; Masri BA; Duncan CP; Oxland TR
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):853-5. PubMed ID: 16023774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration-assisted bone-graft compaction in impaction bone grafting of the femur.
    Bolland BJ; New AM; Madabhushi SP; Oreffo RO; Dunlop DG
    J Bone Joint Surg Br; 2007 May; 89(5):686-92. PubMed ID: 17540758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of 7-10mm bone grafts and small slurry grafts in impaction bone grafting.
    Xu ZJ; Chen LY; Zhong C; Tan YB; He RX
    J Orthop Res; 2011 Oct; 29(10):1491-5. PubMed ID: 21469177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaction bone grafting: a laboratory comparison of two methods.
    Putzer D; Mayr E; Haid C; Reinthaler A; Nogler M
    J Bone Joint Surg Br; 2011 Aug; 93(8):1049-53. PubMed ID: 21768627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaction grafting with a bone-graft substitute in a sheep model of revision hip replacement.
    Coathup M; Smith N; Kingsley C; Buckland T; Dattani R; Ascroft GP; Blunn G
    J Bone Joint Surg Br; 2008 Feb; 90(2):246-53. PubMed ID: 18256099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaction bone grafting with freeze-dried irradiated bone. Part II. Changes in stiffness and compactness of morselized grafts: experiments in cadavers.
    Cornu O; Bavadekar A; Godts B; Van Tomme J; Delloye C; Banse X
    Acta Orthop Scand; 2003 Oct; 74(5):553-8. PubMed ID: 14620975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the addition of hydroxyapatite graft substitutes upon the hoop strain and subsequent subsidence of a femoral model during impaction bone grafting.
    McNamara IR; Rayment A; Brooks R; Best S; Rushton N
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):238-46. PubMed ID: 22100099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical analysis of a synthetic, biodegradable impaction graft substitute.
    Lutton C; Wheatley D; Wilson L; Van der Velden W; Crawford R; Goss B
    J Biomed Mater Res A; 2010 Nov; 95(2):381-7. PubMed ID: 20632400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neck fracture femoral heads for impaction bone grafting: evolution of stiffness and compactness during impaction of osteoarthrotic and neck-fracture femoral heads.
    Cornu O; Manil O; Godts B; Naets B; Van Tomme J; Delloye C; Banse X
    Acta Orthop Scand; 2004 Jun; 75(3):303-8. PubMed ID: 15260422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the viscoelastic properties of bone grafts.
    Datta A; Gheduzzi S; Miles AW
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):761-6. PubMed ID: 16713046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydroxyapatite graft substitute reduces subsidence in a femoral impaction grafting model.
    Munro NA; Downing MR; Meakin JR; Lee AJ; Ashcroft GP
    Clin Orthop Relat Res; 2007 Feb; 455():246-52. PubMed ID: 16967033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.