These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15713315)

  • 1. Dynamic coordinate data for describing muscle-tendon paths: a mathematical approach.
    Carman AB; Milburn PD
    J Biomech; 2005 Apr; 38(4):943-51. PubMed ID: 15713315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of a general purpose robotic testing system for musculoskeletal applications.
    Noble LD; Colbrunn RW; Lee DG; van den Bogert AJ; Davis BL
    J Biomech Eng; 2010 Feb; 132(2):025001. PubMed ID: 20370251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation of tendons in vivo with active and passive knee muscles.
    Aalbersberg S; Kingma I; Ronsky JL; Frayne R; van Dieën JH
    J Biomech; 2005 Sep; 38(9):1780-8. PubMed ID: 16023464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are fixed limb inertial models valid for dynamic simulations of human movement?
    Clark T; Hawkins D
    J Biomech; 2010 Oct; 43(14):2695-701. PubMed ID: 20673667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability.
    Pal S; Langenderfer JE; Stowe JQ; Laz PJ; Petrella AJ; Rullkoetter PJ
    Ann Biomed Eng; 2007 Sep; 35(9):1632-42. PubMed ID: 17546504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling tendon excursions and moment arms of the finger flexors: anatomic fidelity versus function.
    Kociolek AM; Keir PJ
    J Biomech; 2011 Jul; 44(10):1967-73. PubMed ID: 21596382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error propagation from kinematic data to modeled muscle-tendon lengths during walking.
    Oberhofer K; Mithraratne K; Stott NS; Anderson IA
    J Biomech; 2009 Jan; 42(1):77-81. PubMed ID: 19062018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coactivation patterns of the medial and lateral hamstrings based on joint position and movement velocity during isokinetic movements.
    Croce RV; Miller JP
    Electromyogr Clin Neurophysiol; 2006; 46(2):113-22. PubMed ID: 16796001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fundamental thumb-tip force vectors produced by the muscles of the thumb.
    Pearlman JL; Roach SS; Valero-Cuevas FJ
    J Orthop Res; 2004 Mar; 22(2):306-12. PubMed ID: 15013089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An equation to calculate individual muscle contributions to joint stability.
    Potvin JR; Brown SH
    J Biomech; 2005 May; 38(5):973-80. PubMed ID: 15797580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint work and power associated with acceleration and deceleration in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2005 Jan; 208(Pt 1):41-53. PubMed ID: 15601876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit.
    Hoyt DF; Wickler SJ; Biewener AA; Cogger EA; De La Paz KL
    J Exp Biol; 2005 Mar; 208(Pt 6):1175-90. PubMed ID: 15767316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A muscle-path-plane method for representing muscle contraction during joint movement.
    Tang G; Wang CT
    Comput Methods Biomech Biomed Engin; 2010 Dec; 13(6):723-9. PubMed ID: 20521185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical considerations in the modeling of muscle function.
    Andrews JG; Hay JG
    Acta Morphol Neerl Scand; 1983 Sep; 21(3):199-223. PubMed ID: 6637590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating modelling and experiments to assess dynamic musculoskeletal function in humans.
    Fernandez JW; Pandy MG
    Exp Physiol; 2006 Mar; 91(2):371-82. PubMed ID: 16407475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuro-mechanical transducer model for controlling joint rotations and limb movements.
    Laczkó J; Kerry W; Rodolfo L
    Ideggyogy Sz; 2006 Jan; 59(1-2):32-43. PubMed ID: 16491570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.