These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 15713323)
1. A dynamic model for the ideal-free distribution as a partial differential equation. Cosner C Theor Popul Biol; 2005 Mar; 67(2):101-8. PubMed ID: 15713323 [TBL] [Abstract][Full Text] [Related]
2. A continuum formulation of the ideal free distribution and its implications for population dynamics. Kshatriya M; Cosner C Theor Popul Biol; 2002 May; 61(3):277-84. PubMed ID: 12027614 [TBL] [Abstract][Full Text] [Related]
3. The ideal free distribution as an evolutionarily stable strategy. Cantrell RS; Cosner C; DeAngelis DL; Padron V J Biol Dyn; 2007 Jul; 1(3):249-71. PubMed ID: 22876794 [TBL] [Abstract][Full Text] [Related]
4. Spatial heterogeneity and critical patch size: Area effects via diffusion in closed environments. Cantrell RS; Cosner C J Theor Biol; 2001 Mar; 209(2):161-71. PubMed ID: 11401458 [TBL] [Abstract][Full Text] [Related]
5. Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Baeumer B; Kovács M; Meerschaert MM Bull Math Biol; 2007 Oct; 69(7):2281-97. PubMed ID: 17546475 [TBL] [Abstract][Full Text] [Related]
6. Iteroparous reproduction strategies and population dynamics. Kooi BW; Hallam TG; Kelpin FD; Krohn CM; Kooijman SA Bull Math Biol; 2001 Jul; 63(4):769-94. PubMed ID: 11497167 [TBL] [Abstract][Full Text] [Related]
7. Resolving discrepancies between deterministic population models and individual-based simulations. Wilson WG Am Nat; 1998 Feb; 151(2):116-34. PubMed ID: 18811412 [TBL] [Abstract][Full Text] [Related]
8. Numerical method based on the lattice Boltzmann model for the Fisher equation. Yan G; Zhang J; Dong Y Chaos; 2008 Jun; 18(2):023131. PubMed ID: 18601497 [TBL] [Abstract][Full Text] [Related]
9. Consumers that are not 'ideal' or 'free' can still approach the ideal free distribution using simple patch-leaving rules. Griffen BD J Anim Ecol; 2009 Sep; 78(5):919-27. PubMed ID: 19486205 [TBL] [Abstract][Full Text] [Related]
11. Putting competition strategies into ideal free distribution models: habitat selection as a tug of war. Flaxman SM; Reeve HK J Theor Biol; 2006 Dec; 243(4):587-93. PubMed ID: 16930625 [TBL] [Abstract][Full Text] [Related]
12. Population and community consequences of spatial subsidies derived from central-place foraging. Fagan WF; Lutscher F; Schneider K Am Nat; 2007 Dec; 170(6):902-15. PubMed ID: 18171172 [TBL] [Abstract][Full Text] [Related]
13. Discrete event versus continuous approach to reproduction in structured population dynamics. Kooi BW; Kooijman SA Theor Popul Biol; 1999 Aug; 56(1):91-105. PubMed ID: 10438671 [TBL] [Abstract][Full Text] [Related]
14. Linking movement behaviour, dispersal and population processes: is individual variation a key? Hawkes C J Anim Ecol; 2009 Sep; 78(5):894-906. PubMed ID: 19302396 [TBL] [Abstract][Full Text] [Related]
15. Patterns and causes of species richness: a general simulation model for macroecology. Gotelli NJ; Anderson MJ; Arita HT; Chao A; Colwell RK; Connolly SR; Currie DJ; Dunn RR; Graves GR; Green JL; Grytnes JA; Jiang YH; Jetz W; Kathleen Lyons S; McCain CM; Magurran AE; Rahbek C; Rangel TF; Soberón J; Webb CO; Willig MR Ecol Lett; 2009 Sep; 12(9):873-86. PubMed ID: 19702748 [TBL] [Abstract][Full Text] [Related]
16. The ideal free distribution: a review and synthesis of the game-theoretic perspective. Krivan V; Cressman R; Schneider C Theor Popul Biol; 2008 May; 73(3):403-25. PubMed ID: 18282592 [TBL] [Abstract][Full Text] [Related]
17. Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations. Mayawala K; Vlachos DG; Edwards JS Biophys Chem; 2006 Jun; 121(3):194-208. PubMed ID: 16504372 [TBL] [Abstract][Full Text] [Related]
18. Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Champagnat N; Ferrière R; Méléard S Theor Popul Biol; 2006 May; 69(3):297-321. PubMed ID: 16460772 [TBL] [Abstract][Full Text] [Related]
19. Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices. White SM; White KA J Theor Biol; 2005 Aug; 235(4):463-75. PubMed ID: 15935165 [TBL] [Abstract][Full Text] [Related]
20. Spatio-temporal patterns of gene flow and dispersal under temperature increase. Richter O Math Biosci; 2009 Mar; 218(1):15-23. PubMed ID: 19116157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]