These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 15713459)
1. The first cytoplasmic loop of the mannitol permease from Escherichia coli is accessible for sulfhydryl reagents from the periplasmic side of the membrane. Vervoort EB; Bultema JB; Schuurman-Wolters GK; Geertsma ER; Broos J; Poolman B J Mol Biol; 2005 Feb; 346(3):733-43. PubMed ID: 15713459 [TBL] [Abstract][Full Text] [Related]
2. Probing the conformation of the lactose permease of Escherichia coli by in situ site-directed sulfhydryl modification. Frillingos S; Kaback HR Biochemistry; 1996 Apr; 35(13):3950-6. PubMed ID: 8672426 [TBL] [Abstract][Full Text] [Related]
3. Structure of the cytoplasmic loop between putative helices II and III of the mannitol permease of Escherichia coli: a tryptophan and 5-fluorotryptophan spectroscopy study. Vos EP; Bokhove M; Hesp BH; Broos J Biochemistry; 2009 Jun; 48(23):5284-90. PubMed ID: 19402710 [TBL] [Abstract][Full Text] [Related]
4. Site-directed sulfhydryl labeling of helix IX in the lactose permease of Escherichia coli. Zhang W; Hu Y; Kaback HR Biochemistry; 2003 May; 42(17):4904-8. PubMed ID: 12718531 [TBL] [Abstract][Full Text] [Related]
5. Cysteine-scanning mutagenesis of transmembrane domain XII and the flanking periplasmic loop in the lactose permease of EScherichia coli. He MM; Sun J; Kaback HR Biochemistry; 1996 Oct; 35(39):12909-14. PubMed ID: 8841135 [TBL] [Abstract][Full Text] [Related]
6. Cysteine cross-linking defines part of the dimer and B/C domain interface of the Escherichia coli mannitol permease. van Montfort BA; Schuurman-Wolters GK; Duurkens RH; Mensen R; Poolman B; Robillard GT J Biol Chem; 2001 Apr; 276(16):12756-63. PubMed ID: 11278734 [TBL] [Abstract][Full Text] [Related]
7. Structural investigation of the transmembrane C domain of the mannitol permease from Escherichia coli using 5-FTrp fluorescence spectroscopy. Opačić M; Hesp BH; Fusetti F; Dijkstra BW; Broos J Biochim Biophys Acta; 2012 Mar; 1818(3):861-8. PubMed ID: 22100747 [TBL] [Abstract][Full Text] [Related]
8. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off. Frillingos S; Gonzalez A; Kaback HR Biochemistry; 1997 Nov; 36(47):14284-90. PubMed ID: 9400367 [TBL] [Abstract][Full Text] [Related]
9. Membrane topology of the melibiose permease of Escherichia coli studied by melB-phoA fusion analysis. Pourcher T; Bibi E; Kaback HR; Leblanc G Biochemistry; 1996 Apr; 35(13):4161-8. PubMed ID: 8672452 [TBL] [Abstract][Full Text] [Related]
10. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system. Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611 [TBL] [Abstract][Full Text] [Related]
11. Domain complementation studies reveal residues critical for the activity of the mannitol permease from Escherichia coli. Vos EP; ter Horst R; Poolman B; Broos J Biochim Biophys Acta; 2009 Feb; 1788(2):581-6. PubMed ID: 19013424 [TBL] [Abstract][Full Text] [Related]
12. Visualization of the phosphorylated active site loop of the cytoplasmic B domain of the mannitol transporter II(Mannitol) of the Escherichia coli phosphotransferase system by NMR spectroscopy and residual dipolar couplings. Suh JY; Tang C; Cai M; Clore GM J Mol Biol; 2005 Nov; 353(5):1129-36. PubMed ID: 16219324 [TBL] [Abstract][Full Text] [Related]
13. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: N-ethylmaleimide-sensitive face of helix II. Venkatesan P; Liu Z; Hu Y; Kaback HR Biochemistry; 2000 Sep; 39(35):10649-55. PubMed ID: 10978148 [TBL] [Abstract][Full Text] [Related]
14. Site-directed alkylation of cysteine replacements in the lactose permease of Escherichia coli: helices I, III, VI, and XI. Ermolova N; Madhvani RV; Kaback HR Biochemistry; 2006 Apr; 45(13):4182-9. PubMed ID: 16566592 [TBL] [Abstract][Full Text] [Related]
15. Roles of conserved arginine residues in the metal-tetracycline/H+ antiporter of Escherichia coli. Kimura T; Nakatani M; Kawabe T; Yamaguchi A Biochemistry; 1998 Apr; 37(16):5475-80. PubMed ID: 9548929 [TBL] [Abstract][Full Text] [Related]
16. The different functions of BglF, the E. coli beta-glucoside permease and sensor of the bgl system, have different structural requirements. Chen Q; Amster-Choder O Biochemistry; 1998 Dec; 37(48):17040-7. PubMed ID: 9836599 [TBL] [Abstract][Full Text] [Related]
17. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins. Dobrowolski A; Lolkema JS Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131 [TBL] [Abstract][Full Text] [Related]
19. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix X. Venkatesan P; Hu Y; Kaback HR Biochemistry; 2000 Sep; 39(35):10656-61. PubMed ID: 10978149 [TBL] [Abstract][Full Text] [Related]
20. Topology and accessibility of the transmembrane helices and the sensory site in the bifunctional transporter DcuB of Escherichia coli. Bauer J; Fritsch MJ; Palmer T; Unden G Biochemistry; 2011 Jul; 50(26):5925-38. PubMed ID: 21634397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]