BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15714266)

  • 1. Inverting a model of neuromuscular control to estimate descending activation patterns that generate fast-reaching movements.
    Hummert C; Zhang L; Schöner G
    J Neurophysiol; 2024 Jun; 131(6):1271-1285. PubMed ID: 38716565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Trial Dynamics of Competing Reach Plans in the Human Motor Periphery.
    Selen LPJ; Corneil BD; Medendorp WP
    J Neurosci; 2023 Apr; 43(15):2782-2793. PubMed ID: 36898839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Referent Control Variables Underlying Goal-Directed Arm Movements.
    El-Hage MR; Wendling A; Levin MF; Feldman AG
    Motor Control; 2023 Oct; 27(4):782-799. PubMed ID: 37225175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Perturbed Human Arm Movements in a Neuro-Musculoskeletal Model to Investigate the Muscular Force Response.
    Stollenmaier K; Ilg W; Haeufle DFB
    Front Bioeng Biotechnol; 2020; 8():308. PubMed ID: 32373601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Priors engaged in long-latency responses to mechanical perturbations suggest a rapid update in state estimation.
    Crevecoeur F; Scott SH
    PLoS Comput Biol; 2013; 9(8):e1003177. PubMed ID: 23966846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active sensing without efference copy: referent control of perception.
    Feldman AG
    J Neurophysiol; 2016 Sep; 116(3):960-76. PubMed ID: 27306668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control of the arm's equilibrium position.
    Takagi A; Burdet E; Koike Y
    J Neurophysiol; 2024 Apr; 131(4):750-756. PubMed ID: 38507295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physiologically based hypothesis for learning proprioception and in approximating inverse kinematics.
    Simkins M
    Physiol Rep; 2016 May; 4(10):. PubMed ID: 27225625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using principles of motor control to analyze performance of human machine interfaces.
    Patwardhan S; Gladhill KA; Joiner WM; Schofield JS; Lee BS; Sikdar S
    Sci Rep; 2023 Aug; 13(1):13273. PubMed ID: 37582852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command.
    Buchanan TS; Lloyd DG; Manal K; Besier TF
    J Appl Biomech; 2004 Nov; 20(4):367-95. PubMed ID: 16467928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle co-contraction modulates damping and joint stability in a three-link biomechanical limb.
    Heitmann S; Ferns N; Breakspear M
    Front Neurorobot; 2011; 5():5. PubMed ID: 22275897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological Computation Increases From Lower- to Higher-Level of Biological Motor Control Hierarchy.
    Haeufle DFB; Stollenmaier K; Heinrich I; Schmitt S; Ghazi-Zahedi K
    Front Robot AI; 2020; 7():511265. PubMed ID: 33501299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding voluntary human movement variability through data-driven segmentation and clustering.
    Daneault JF; Oubre B; Miranda JGV; Lee SI
    Front Hum Neurosci; 2023; 17():1278653. PubMed ID: 38090552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated analysis of cell shape and movement in moving frame.
    Heryanto YD; Cheng CY; Uchida Y; Mimura K; Ishii M; Yamada R
    Biol Open; 2021 Mar; 10(3):. PubMed ID: 33664097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Looking for synergies between the equilibrium point hypothesis and internal models.
    Shapiro MB; Kording KP
    Motor Control; 2010 Jul; 14(3):31-34. PubMed ID: 24795526
    [No Abstract]   [Full Text] [Related]  

  • 16. Muscle coactivation: definitions, mechanisms, and functions.
    Latash ML
    J Neurophysiol; 2018 Jul; 120(1):88-104. PubMed ID: 29589812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contralateral cerebellar damage impairs imperative planning but not updating of aimed arm movements in humans.
    Fisher BE; Boyd L; Winstein CJ
    Exp Brain Res; 2006 Oct; 174(3):453-66. PubMed ID: 16741716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.