These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15714558)

  • 1. Of light and length: regulation of hypocotyl growth in Arabidopsis.
    Vandenbussche F; Verbelen JP; Van Der Straeten D
    Bioessays; 2005 Mar; 27(3):275-84. PubMed ID: 15714558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.
    Niwa Y; Yamashino T; Mizuno T
    Plant Cell Physiol; 2009 Apr; 50(4):838-54. PubMed ID: 19233867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal-transduction pathways controlling light-regulated development in Arabidopsis.
    Chory J; Cook RK; Dixon R; Elich T; Li HM; Lopez E; Mochizuki N; Nagpal P; Pepper A; Poole D
    Philos Trans R Soc Lond B Biol Sci; 1995 Oct; 350(1331):59-65. PubMed ID: 8577851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth.
    Park JE; Seo PJ; Lee AK; Jung JH; Kim YS; Park CM
    Plant Cell Physiol; 2007 Aug; 48(8):1236-41. PubMed ID: 17602188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant biology: time for growth.
    Breton G; Kay SA
    Nature; 2007 Jul; 448(7151):265-6. PubMed ID: 17637650
    [No Abstract]   [Full Text] [Related]  

  • 6. Optimizing environmental conditions for mass application of mechano-dwarfing stimuli to Arabidopsis.
    Montgomery JA; Bressan RA; Mitchell CA
    J Am Soc Hortic Sci; 2004 May; 129(3):339-43. PubMed ID: 15776543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of gene expression by light.
    Casal JJ; Yanovsky MJ
    Int J Dev Biol; 2005; 49(5-6):501-11. PubMed ID: 16096960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell elongation in Arabidopsis hypocotyls involves dynamic changes in cell wall thickness.
    Derbyshire P; Findlay K; McCann MC; Roberts K
    J Exp Bot; 2007; 58(8):2079-89. PubMed ID: 17470442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular framework for light and gibberellin control of cell elongation.
    de Lucas M; Davière JM; Rodríguez-Falcón M; Pontin M; Iglesias-Pedraz JM; Lorrain S; Fankhauser C; Blázquez MA; Titarenko E; Prat S
    Nature; 2008 Jan; 451(7177):480-4. PubMed ID: 18216857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time.
    Kim WY; Hicks KA; Somers DE
    Plant Physiol; 2005 Nov; 139(3):1557-69. PubMed ID: 16258016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis.
    Street IH; Shah PK; Smith AM; Avery N; Neff MM
    Plant J; 2008 Apr; 54(1):1-14. PubMed ID: 18088311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt tolerance (STO), a stress-related protein, has a major role in light signalling.
    Indorf M; Cordero J; Neuhaus G; Rodríguez-Franco M
    Plant J; 2007 Aug; 51(4):563-74. PubMed ID: 17605755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl.
    De Grauwe L; Vandenbussche F; Tietz O; Palme K; Van Der Straeten D
    Plant Cell Physiol; 2005 Jun; 46(6):827-36. PubMed ID: 15851402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DELLA protein function in growth responses to canopy signals.
    Djakovic-Petrovic T; de Wit M; Voesenek LA; Pierik R
    Plant J; 2007 Jul; 51(1):117-26. PubMed ID: 17488236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a novel putative zinc finger gene MIF1: involvement in multiple hormonal regulation of Arabidopsis development.
    Hu W; Ma H
    Plant J; 2006 Feb; 45(3):399-422. PubMed ID: 16412086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dawning of a new era: photomorphogenesis as an integrated molecular network.
    Nemhauser JL
    Curr Opin Plant Biol; 2008 Feb; 11(1):4-8. PubMed ID: 18053757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage.
    Allen T; Ingles PJ; Praekelt U; Smith H; Whitelam GC
    Plant J; 2006 May; 46(4):641-8. PubMed ID: 16640600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development.
    Más P
    Int J Dev Biol; 2005; 49(5-6):491-500. PubMed ID: 16096959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis.
    Zhang X; Chen Y; Wang ZY; Chen Z; Gu H; Qu LJ
    Plant J; 2007 Aug; 51(3):512-25. PubMed ID: 17587236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness.
    Alabadí D; Gallego-Bartolomé J; Orlando L; García-Cárcel L; Rubio V; Martínez C; Frigerio M; Iglesias-Pedraz JM; Espinosa A; Deng XW; Blázquez MA
    Plant J; 2008 Jan; 53(2):324-35. PubMed ID: 18053005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.