BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15715430)

  • 1. Characteristics of boron-dose enhancer dependent on dose protocol and 10B concentration for BNCT using near-threshold 7Li(p,n)7Be direct neutrons.
    Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M
    Phys Med Biol; 2005 Jan; 50(1):167-77. PubMed ID: 15715430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of BDE dependent on 10B concentration for accelerator-based BNCT using near-threshold 7Li(p,n)7Be direct neutrons.
    Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M
    Appl Radiat Isot; 2004 Nov; 61(5):875-9. PubMed ID: 15308161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold 7Li(p,n)7Be direct neutrons.
    Bengua G; Kobayashi T; Tanaka K; Nakagawa Y
    Phys Med Biol; 2004 Mar; 49(5):819-31. PubMed ID: 15070205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irradiation characteristics of BNCT using near-threshold 7Li(p, n)7Be direct neutrons: application to intra-operative BNCT for malignant brain tumours.
    Tanaka K; Kobayashi T; Sakurai Y; Nakagawa Y; Ishikawa M; Hoshi M
    Phys Med Biol; 2002 Aug; 47(16):3011-32. PubMed ID: 12222863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT.
    Bengua G; Kobayashi T; Tanaka K; Nakagawa Y; Unesaki H
    Phys Med Biol; 2006 Aug; 51(16):4095-109. PubMed ID: 16885627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT.
    Kobayashi T; Bengua G; Tanaka K; Nakagawa Y
    Phys Med Biol; 2007 Feb; 52(3):645-58. PubMed ID: 17228111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization parameters for BDE in BNCT using near threshold 7Li(p,n)7Be direct neutrons.
    Bengua G; Kobayashi T; Tanaka K; Nakagawa Y
    Appl Radiat Isot; 2004 Nov; 61(5):1003-8. PubMed ID: 15308183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using 7Li(p, n) neutrons at proton energy of 2.5 MeV.
    Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M
    Med Phys; 2006 Jun; 33(6):1688-94. PubMed ID: 16872076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron neutron capture therapy (BNCT) for malignant melanoma with special reference to absorbed doses to the normal skin and tumor.
    Fukuda H; Hiratsuka J; Kobayashi T; Sakurai Y; Yoshino K; Karashima H; Turu K; Araki K; Mishima Y; Ichihashi M
    Australas Phys Eng Sci Med; 2003 Sep; 26(3):97-103. PubMed ID: 14626847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A TPD and AR based comparison of accelerator neutron irradiation fields between (7)Li and W targets for BNCT.
    Tanaka K; Endo S; Yonai S; Baba M; Hoshi M
    Appl Radiat Isot; 2014 Jun; 88():229-32. PubMed ID: 24359788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-threshold (7)Li(p,n)(7)Be neutrons on the practical conditions using thick Li-target and Gaussian proton energies for BNCT.
    Kobayashi T; Hayashizaki N; Katabuchi T; Tanaka K; Bengua G; Nakao N; Kosako K
    Appl Radiat Isot; 2014 Jun; 88():221-4. PubMed ID: 24491682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV.
    Yu W; Yue G; Han X; Chen J; Tian B
    Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COMPARISON OF BNCT DOSIMETRY CALCULATIONS USING DIFFERENT GEANT4 PHYSICS LISTS.
    Chen Z; Yang P; Lei Q; Wen Y; He D; Wu Z; Gou C
    Radiat Prot Dosimetry; 2019 Dec; 187(1):88-97. PubMed ID: 31135899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Monte Carlo dosimetry-based evaluation of the 7Li(p,n)7Be reaction near threshold for accelerator boron neutron capture therapy.
    Lee CL; Zhou XL; Kudchadker RJ; Harmon F; Harker YD
    Med Phys; 2000 Jan; 27(1):192-202. PubMed ID: 10659757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phantom materials for boron neutron capture therapy.
    Raaijmakers CP; Nottelman EL; Mijnheer BJ
    Phys Med Biol; 2000 Aug; 45(8):2353-61. PubMed ID: 10958199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomedical applications of 10B and 11B NMR.
    Bendel P
    NMR Biomed; 2005 Apr; 18(2):74-82. PubMed ID: 15770608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line reconstruction of low boron concentrations by in vivo gamma-ray spectroscopy for BNCT.
    Verbakel WF; Stecher-Rasmussen F
    Phys Med Biol; 2001 Mar; 46(3):687-701. PubMed ID: 11277217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fricke gel dosimetry in boron neutron capture therapy.
    Gambarini G; Birattari C; Colombi C; Pirola L; Rosi G
    Radiat Prot Dosimetry; 2002; 101(1-4):419-22. PubMed ID: 12382781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams.
    Zamenhof RG; Murray BW; Brownell GL; Wellum GR; Tolpin EI
    Med Phys; 1975; 2(2):47-60. PubMed ID: 1186617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Neutron Sources and 10B Concentration on Boron Neutron Capture Therapy for Shallow and Deeper Non-small Cell Lung Cancer.
    Yu H; Tang X; Shu D; Liu Y; Geng C; Gong C; Hang S; Chen D
    Health Phys; 2017 Mar; 112(3):258-265. PubMed ID: 28121726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.