These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15715875)

  • 1. Development of a semi-nested PCR based method for sensitive detection of tumorigenic Agrobacterium in soil.
    Puławska J; Sobiczewski P
    J Appl Microbiol; 2005; 98(3):710-21. PubMed ID: 15715875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel SCAR primers for specific and sensitive detection of Agrobacterium vitis strains.
    Lim SH; Kim JG; Kang HW
    Microbiol Res; 2009; 164(4):451-60. PubMed ID: 17467252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new PCR system for Agrobacterium tumefaciens detection based on amplification of T-DNA fragment.
    Sachadyn P; Kur J
    Acta Microbiol Pol; 1997; 46(2):145-56. PubMed ID: 9429288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific and sensitive detection of Ralstonia solanacearum in soil with quantitative, real-time PCR assays.
    Huang J; Wu J; Li C; Xiao C; Wang G
    J Appl Microbiol; 2009 Nov; 107(5):1729-39. PubMed ID: 19486215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil.
    Zhang Z; Zhang J; Wang Y; Zheng X
    FEMS Microbiol Lett; 2005 Aug; 249(1):39-47. PubMed ID: 16019161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities.
    Oros-Sichler M; Gomes NC; Neuber G; Smalla K
    J Microbiol Methods; 2006 Apr; 65(1):63-75. PubMed ID: 16102860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Agrobacterium spp. present within Brassica napus seed by TaqMan PCR--implications for GM screening procedures.
    Weller SA; Simpkins SA; Stead DE; Kurdziel A; Hird H; Weekes RJ
    Arch Microbiol; 2002 Nov; 178(5):338-43. PubMed ID: 12375101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a highly sensitive nested-PCR method using a single closed tube for detection of Fusarium culmorum in cereal samples.
    Klemsdal SS; Elen O
    Lett Appl Microbiol; 2006 May; 42(5):544-8. PubMed ID: 16620217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of real-time PCR assay for detection and quantification of Sinorhizobium meliloti in soil and plant tissue.
    Trabelsi D; Pini F; Aouani ME; Bazzicalupo M; Mengoni A
    Lett Appl Microbiol; 2009 Mar; 48(3):355-61. PubMed ID: 19207854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and specific identification of four Agrobacterium species and biovars using multiplex PCR.
    Puławska J; Willems A; Sobiczewski P
    Syst Appl Microbiol; 2006 Sep; 29(6):470-9. PubMed ID: 16343837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and quantification of Entomophaga maimaiga resting spores in forest soil using real-time PCR.
    Castrillo LA; Thomsen L; Juneja P; Hajek AE
    Mycol Res; 2007 Mar; 111(Pt 3):324-31. PubMed ID: 17363233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ribosomal RNA gene intergenic spacer based PCR and DGGE fingerprinting method for the analysis of specific rhizobial communities in soil.
    de Oliveira VM; Manfio GP; da Costa Coutinho HL; Keijzer-Wolters AC; van Elsas JD
    J Microbiol Methods; 2006 Mar; 64(3):366-79. PubMed ID: 16014316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Methods for the detection of Agrobacterium from plant, soil and water samples].
    Alippi AM; López AC; Balatti PA
    Rev Argent Microbiol; 2011; 43(4):278-86. PubMed ID: 22274826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of Francisella tularensis from soil samples by filtration and detection by real-time PCR and cELISA.
    Sellek R; Jimenez O; Aizpurua C; Fernandez-Frutos B; De Leon P; Camacho M; Fernandez-Moreira D; Ybarra C; Carlos Cabria J
    J Environ Monit; 2008 Mar; 10(3):362-9. PubMed ID: 18392279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a multiplex nested consensus PCR for detection and identification of major human herpesviruses in CNS infections.
    Tafreshi NK; Sadeghizadeh M; Amini-Bavil-Olyaee S; Ahadi AM; Jahanzad I; Roostaee MH
    J Clin Virol; 2005 Apr; 32(4):318-24. PubMed ID: 15780812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct detection of Histoplasma capsulatum in soil suspensions by two-stage PCR.
    Reid TM; Schafer MP
    Mol Cell Probes; 1999 Aug; 13(4):269-73. PubMed ID: 10441199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular detection of nifH gene-containing Paenibacillus in the rhizosphere of sorghum (Sorghum bicolor) sown in Cerrado soil.
    Coelho MR; Carneiro NP; Marriel IE; Seldin L
    Lett Appl Microbiol; 2009 May; 48(5):611-7. PubMed ID: 19291207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting.
    Vanbroekhoven K; Ryngaert A; Wattiau P; Mot R; Springael D
    FEMS Microbiol Ecol; 2004 Oct; 50(1):37-50. PubMed ID: 19712375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Magnaporthe grisea in infested rice seeds using polymerase chain reaction.
    Chadha S; Gopalakrishna T
    J Appl Microbiol; 2006 May; 100(5):1147-53. PubMed ID: 16630016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single-tube nested real-time polymerase chain reaction for sensitive contained detection of Cryptosporidium parvum.
    Minarovicová J; Kaclíková E; Krascsenicsová K; Siekel P; Kuchta T
    Lett Appl Microbiol; 2009 Nov; 49(5):568-72. PubMed ID: 19709364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.