These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 15715982)
1. Metabolism of 1,8-cineole by human cytochrome P450 enzymes: identification of a new hydroxylated metabolite. Duisken M; Sandner F; Blömeke B; Hollender J Biochim Biophys Acta; 2005 Apr; 1722(3):304-11. PubMed ID: 15715982 [TBL] [Abstract][Full Text] [Related]
2. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Miyazawa M; Shindo M; Shimada T Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812 [TBL] [Abstract][Full Text] [Related]
3. Roles of cytochrome P450 3A enzymes in the 2-hydroxylation of 1,4-cineole, a monoterpene cyclic ether, by rat and human liver microsomes. Miyazawa M; Shindo M; Shimada T Xenobiotica; 2001 Oct; 31(10):713-23. PubMed ID: 11695850 [TBL] [Abstract][Full Text] [Related]
4. Metabolism of Delta(3)-carene by human cytochrome p450 enzymes: identification and characterization of two new metabolites. Duisken M; Benz D; Peiffer TH; Blömeke B; Hollender J Curr Drug Metab; 2005 Dec; 6(6):593-601. PubMed ID: 16379671 [TBL] [Abstract][Full Text] [Related]
5. Biotransformation of 1,8-cineole by human liver microsomes. Miyazawa M; Shindo M Nat Prod Lett; 2001; 15(1):49-53. PubMed ID: 11547423 [TBL] [Abstract][Full Text] [Related]
7. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450 2B6 as the major enzyme involved. Erratico CA; Szeitz A; Bandiera SM Chem Res Toxicol; 2013 May; 26(5):721-31. PubMed ID: 23537005 [TBL] [Abstract][Full Text] [Related]
8. Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1. Mi J; Schewe H; Buchhaupt M; Holtmann D; Schrader J World J Microbiol Biotechnol; 2016 Jul; 32(7):112. PubMed ID: 27263007 [TBL] [Abstract][Full Text] [Related]
9. Stereo- and regioselectivity account for the diversity of dehydroepiandrosterone (DHEA) metabolites produced by liver microsomal cytochromes P450. Miller KK; Cai J; Ripp SL; Pierce WM; Rushmore TH; Prough RA Drug Metab Dispos; 2004 Mar; 32(3):305-13. PubMed ID: 14977864 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Crewe HK; Notley LM; Wunsch RM; Lennard MS; Gillam EM Drug Metab Dispos; 2002 Aug; 30(8):869-74. PubMed ID: 12124303 [TBL] [Abstract][Full Text] [Related]
11. Bufuralol hydroxylation by cytochrome P450 2D6 and 1A2 enzymes in human liver microsomes. Yamazaki H; Guo Z; Persmark M; Mimura M; Inoue K; Guengerich FP; Shimada T Mol Pharmacol; 1994 Sep; 46(3):568-77. PubMed ID: 7935340 [TBL] [Abstract][Full Text] [Related]
12. In Vitro Regio- and Stereoselective Oxidation of β-Ionone by Human Liver Microsomes. Marumoto S; Shimizu R; Tanabe G; Okuno Y; Miyazawa M Planta Med; 2017 Feb; 83(3-04):292-299. PubMed ID: 27574897 [TBL] [Abstract][Full Text] [Related]
13. Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes. Karam WG; Goldstein JA; Lasker JM; Ghanayem BI Drug Metab Dispos; 1996 Oct; 24(10):1081-7. PubMed ID: 8894508 [TBL] [Abstract][Full Text] [Related]
14. Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. Zhao XJ; Yokoyama H; Chiba K; Wanwimolruk S; Ishizaki T J Pharmacol Exp Ther; 1996 Dec; 279(3):1327-34. PubMed ID: 8968357 [TBL] [Abstract][Full Text] [Related]
15. Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites. Avent KM; DeVoss JJ; Gillam EM Chem Res Toxicol; 2006 Jul; 19(7):914-20. PubMed ID: 16841959 [TBL] [Abstract][Full Text] [Related]
16. 3-ketocholanoic acid is the major in vitro human hepatic microsomal metabolite of lithocholic acid. Deo AK; Bandiera SM Drug Metab Dispos; 2009 Sep; 37(9):1938-47. PubMed ID: 19487251 [TBL] [Abstract][Full Text] [Related]
17. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Engel G; Hofmann U; Heidemann H; Cosme J; Eichelbaum M Clin Pharmacol Ther; 1996 Jun; 59(6):613-23. PubMed ID: 8681486 [TBL] [Abstract][Full Text] [Related]
18. Identification of human hepatic cytochrome p450 enzymes involved in the biotransformation of cholic and chenodeoxycholic acid. Deo AK; Bandiera SM Drug Metab Dispos; 2008 Oct; 36(10):1983-91. PubMed ID: 18583509 [TBL] [Abstract][Full Text] [Related]
19. Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4. Komatsu T; Yamazaki H; Asahi S; Gillam EM; Guengerich FP; Nakajima M; Yokoi T Drug Metab Dispos; 2000 Nov; 28(11):1361-8. PubMed ID: 11038165 [TBL] [Abstract][Full Text] [Related]
20. Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Rahman A; Korzekwa KR; Grogan J; Gonzalez FJ; Harris JW Cancer Res; 1994 Nov; 54(21):5543-6. PubMed ID: 7923194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]