These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15716122)

  • 61. Effects of thyrotropin, carbachol, and protein kinase-C stimulators on glucose transport and glucose oxidation by primary cultures of dog thyroid cells.
    Haraguchi K; Rani CS; Field JB
    Endocrinology; 1988 Sep; 123(3):1288-95. PubMed ID: 2456912
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Asymmetric distribution of muscarinic acetylcholine receptors in Madin-Darby canine kidney cells.
    Nadler LS; Kumar G; Hinds TR; Migeon JC; Nathanson NM
    Am J Physiol; 1999 Dec; 277(6):C1220-8. PubMed ID: 10600774
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. II: Effects of the pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide.
    Aoki Y; Iwasaki Y; Katahira M; Oiso Y; Saito H
    Endocrinology; 1997 May; 138(5):1930-4. PubMed ID: 9112389
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cholera toxin-sensitive 3',5'-cyclic adenosine monophosphate and calcium signals of the human dopamine-D1 receptor: selective potentiation by protein kinase A.
    Liu YF; Civelli O; Zhou QY; Albert PR
    Mol Endocrinol; 1992 Nov; 6(11):1815-24. PubMed ID: 1282671
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Muscarinic cholinergic receptor-mediated control of cyclic AMP metabolism. Agonist-induced changes in nucleotide synthesis and degradation.
    Meeker RB; Harden TK
    Mol Pharmacol; 1983 Mar; 23(2):384-92. PubMed ID: 6300648
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enhanced cAMP accumulation after termination of cholinergic action in the heart.
    Linden J
    FASEB J; 1987 Aug; 1(2):119-24. PubMed ID: 2440752
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Halothane attenuation of muscarinic inhibition of adenylate cyclase in rat heart.
    Narayanan TK; Confer RA; Dennison RL; Anthony BL; Aronstam RS
    Biochem Pharmacol; 1988 Apr; 37(7):1219-23. PubMed ID: 3128298
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells.
    Yoshimura M; Cooper DM
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6716-20. PubMed ID: 1379717
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Limited accumulation of cyclic AMP underlies a modest vasoactive-intestinal-peptide-mediated increase in cytosolic [Ca2+] transients in GH3 pituitary cells.
    Mollard P; Zhang Y; Rodman D; Cooper DM
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):637-40. PubMed ID: 1377907
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Protein kinase C sensitizes olfactory adenylate cyclase.
    Frings S
    J Gen Physiol; 1993 Feb; 101(2):183-205. PubMed ID: 8095969
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multiple hormone actions: the rises in cAMP and Ca++ in MDCK-cells treated with glucagon and prostaglandin E1 are independent processes.
    Kurstjens NP; Heithier H; Cantrill RC; Hahn M; Boege F
    Biochem Biophys Res Commun; 1990 Mar; 167(3):1162-9. PubMed ID: 1690994
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Muscarinic cholinergic inhibition of cyclic AMP formation and adrenocorticotropin secretion in mouse pituitary tumor cells.
    Heisler S; Larose L; Morisset J
    Biochem Biophys Res Commun; 1983 Jul; 114(1):289-95. PubMed ID: 6309168
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Calcium-dependent adenylate cyclase of pituitary tumor cells.
    Brostrom MA; Brotman LA; Brostrom CO
    Biochim Biophys Acta; 1982 Nov; 721(3):227-35. PubMed ID: 6816295
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Muscarinic receptor-stimulated phosphoinositide turnover in human SK-N-SH neuroblastoma cells: differential inhibition by agents that elevate cyclic AMP.
    Akil M; Fisher SK
    J Neurochem; 1989 Nov; 53(5):1479-86. PubMed ID: 2477499
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Calcium entry attenuates adenylyl cyclase activity. A possible mechanism for calcium-induced catecholamine resistance.
    Abernethy WB; Butterworth JF; Prielipp RC; Leith JP; Zaloga GP
    Chest; 1995 May; 107(5):1420-5. PubMed ID: 7538457
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Capacitative Ca2+ entry regulates Ca(2+)-sensitive adenylyl cyclases.
    Cooper DM; Yoshimura M; Zhang Y; Chiono M; Mahey R
    Biochem J; 1994 Feb; 297 ( Pt 3)(Pt 3):437-40. PubMed ID: 8110177
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of toluene on regulation of adenylyl cyclase by stimulation of G-protein-coupled receptors expressed in CHO cells.
    Tsuga H; Wang RS; Honma T
    Jpn J Pharmacol; 1999 Nov; 81(3):305-8. PubMed ID: 10622220
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Augmentation of isoproterenol-stimulated tissue cyclic AMP level by cholinergic agonists in rat parotid gland.
    Yoshimura K; Nezu E; Yoneyama T
    Jpn J Physiol; 1985; 35(5):765-81. PubMed ID: 2416975
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Calcium regulation of cyclic nucleotide signaling in lobster olfactory receptor neurons.
    Reich G; Boekhoff I; Breer H; Ache BW
    J Neurochem; 1999 Jul; 73(1):147-52. PubMed ID: 10386965
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Muscarinic agonist inhibition of rat striatal adenylate cyclase is enhanced by dopamine stimulation.
    DeLapp NW; Eckols K; Shannon HE
    Life Sci; 1996; 59(7):565-72. PubMed ID: 8761345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.