These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 157162)
1. Inactive to active transitions of the mitochondrial ATPase complex as controlled by the ATPase inhibitor. Gómez-Puyou A; de Gómez-Puyou MT; Ernster L Biochim Biophys Acta; 1979 Aug; 547(2):252-7. PubMed ID: 157162 [TBL] [Abstract][Full Text] [Related]
2. Factors affecting the reactivation of the oligomycin-sensitive adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during the re-energization of intact mitochondria from ischemic cardiac muscle. Rouslin W J Biol Chem; 1987 Mar; 262(8):3472-6. PubMed ID: 2950098 [TBL] [Abstract][Full Text] [Related]
3. Estimation of H+-translation stoicheiometry of mitochondrial ATPase by comparison of proton-motive forces with clamped phosphorylation potentials in submitochondrial particles. Sorgato MC; Galiazzo F; Panato L; Ferguson SJ Biochim Biophys Acta; 1982 Oct; 682(1):184-8. PubMed ID: 6215943 [TBL] [Abstract][Full Text] [Related]
4. Factors affecting the species-homologous and species-heterologous binding of mitochondrial ATPase inhibitor, IF1, to the mitochondrial ATPase of slow and fast heart-rate hearts. Rouslin W; Broge CW Arch Biochem Biophys; 1993 Jun; 303(2):443-50. PubMed ID: 8512326 [TBL] [Abstract][Full Text] [Related]
5. ATP synthesis and hydrolysis in submitochondrial particles subjected to an acid-base transition. Effects of the ATPase inhibitor protein. Husain I; Harris DA FEBS Lett; 1983 Aug; 160(1-2):110-4. PubMed ID: 6224702 [TBL] [Abstract][Full Text] [Related]
6. Control of activity states of heart mitochondrial ATPase. Role of the proton-motive force and Ca2+. De Gómez-Puyou MT; Gavilanes M; Gómez-Puyou A; Ernster L Biochim Biophys Acta; 1980 Oct; 592(3):396-405. PubMed ID: 6448069 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of the natural ATPase inhibitor protein. Tuena de Gómez-Puyou MT; Muller U; Dreyfus G; Ayala G; Gómez-Puyou A J Biol Chem; 1983 Nov; 258(22):13680-4. PubMed ID: 6227615 [TBL] [Abstract][Full Text] [Related]
8. Partial uncoupling, or inhibition of electron transport rate, have equivalent effects on the relationship between the rate of ATP synthesis and proton-motive force in submitochondrial particles. Catia Sorgato M; Lippe G; Seren S; Ferguson SJ FEBS Lett; 1985 Feb; 181(2):323-7. PubMed ID: 2982663 [TBL] [Abstract][Full Text] [Related]
9. Pre-steady-state studies of the adenosine triphosphatase activity of coupled submitochondrial particles. Regulation by ADP. Martins OB; Tuena de Gómez-Puyou M; Gómez-Puyou A Biochemistry; 1988 Sep; 27(19):7552-8. PubMed ID: 2974725 [TBL] [Abstract][Full Text] [Related]
10. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles. Lowe PN; Beechey RB Biochem J; 1981 May; 196(2):443-9. PubMed ID: 6459084 [TBL] [Abstract][Full Text] [Related]
11. Energy-linked transhydrogenase. Effects of valinomycin and nigericin on the ATP-driven transhydrogenase reaction catalyzed by reconstituted transhydrogenase-ATPase vesicles. Eytan GD; Carlenor E; Rydström J J Biol Chem; 1990 Aug; 265(22):12949-54. PubMed ID: 2142942 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5'-triphosphate synthesis and hydrolysis in reconstituted systems. Matsuno-Yagi A; Hatefi Y Biochemistry; 1984 Jul; 23(15):3508-14. PubMed ID: 6235851 [TBL] [Abstract][Full Text] [Related]
13. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a mitochondrial inorganic pyrophosphatase in Saccharomyces cerevisiae. Lundin M; Deopujari SW; Lichko L; da Silva LP; Baltscheffsky H Biochim Biophys Acta; 1992 Jan; 1098(2):217-23. PubMed ID: 1309654 [TBL] [Abstract][Full Text] [Related]
15. Release of the inhibitory action of the natural ATPase inhibitor protein on the mitochondrial ATPase. Beltrán C; de Gómez-Puyou MT; Gómez-Puyou A; Darszon A Eur J Biochem; 1984 Oct; 144(1):151-7. PubMed ID: 6236977 [TBL] [Abstract][Full Text] [Related]
16. Differential inhibition of F0F1-ATPase-catalysed reactions in bovine-heart submitochondrial particles by organotin compounds. Emanuel EL; Carver MA; Solani GC; Griffiths DE Biochim Biophys Acta; 1984 Jul; 766(1):209-14. PubMed ID: 6204688 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of two states of F1-ATPase by nucleotide analogs. Schäfer G FEBS Lett; 1982 Mar; 139(2):271-5. PubMed ID: 6210575 [No Abstract] [Full Text] [Related]
18. 3' Esters of ADP as energy-transfer inhibitors and probes of the catalytic site of oxidative phosphorylation. Schäfer G; Onur G Eur J Biochem; 1979 Jul; 97(2):415-24. PubMed ID: 157276 [TBL] [Abstract][Full Text] [Related]
19. F1-ATPase from different submitochondrial particles. Bruni A; Pitotti A; Palatini P; Dabbeni-Sala F; Bigon E Biochim Biophys Acta; 1979 Mar; 545(3):404-14. PubMed ID: 154927 [TBL] [Abstract][Full Text] [Related]
20. Interaction of the aminoglycoside antibiotic dihydrostreptomycin with the H+-ATPase of mitochondria. Guerrieri F; Micelli S; Massagli C; Gallucci E; Papa S Biochem Pharmacol; 1984 Aug; 33(15):2505-10. PubMed ID: 6205657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]