These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 157162)
21. [Esterase activity of the mitochondria oligomycin-sensitive ATPase complex]. Iaguzhinskiĭ LS; Gudz' TI; Verkhovskiĭ AB Biokhimiia; 1978 Nov; 43(11):2058-63. PubMed ID: 153769 [TBL] [Abstract][Full Text] [Related]
22. Reconstituted mitochondrial oligomycin-sensitive ATPase (F0F1) with intermediate Pi in equilibrium HOH exchange but no Pi in equilibrium ATP exchange activity. Ernster L; Carlsson C; Boyer PD FEBS Lett; 1977 Dec; 84(2):283-6. PubMed ID: 145953 [No Abstract] [Full Text] [Related]
23. N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, a new inhibitor of the mitochondrial F1-ATPase. Pougeois R; Satre M; Vignais PV Biochemistry; 1978 Jul; 17(15):3018-23. PubMed ID: 151555 [No Abstract] [Full Text] [Related]
24. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):9-14. PubMed ID: 6211173 [TBL] [Abstract][Full Text] [Related]
25. Interaction of F1-ATPase, from ox heart mitochondria with its naturally occurring inhibitor protein. Studies using radio-iodinated inhibitor protein. Power J; Cross RL; Harris DA Biochim Biophys Acta; 1983 Jul; 724(1):128-41. PubMed ID: 6223660 [TBL] [Abstract][Full Text] [Related]
26. ATP-driven transhydrogenase provides an example of delocalized chemiosmotic coupling in reconstituted vesicles and in submitochondrial particles. Persson B; Berden JA; Rydström J; van Dam K Biochim Biophys Acta; 1987 Nov; 894(2):239-51. PubMed ID: 2960379 [TBL] [Abstract][Full Text] [Related]
27. Further studies on F1-ATPase inhibition by local anesthetics. Chazotte B; Vanderkooi G; Chignell D Biochim Biophys Acta; 1982 Jun; 680(3):310-6. PubMed ID: 6213265 [TBL] [Abstract][Full Text] [Related]
28. Uncoupler-reversible inhibition of mitochondrial ATPase by metal chelates of bathophenanthroline. I. General features. Carlsson C; Ernster L Biochim Biophys Acta; 1981 Dec; 638(2):345-57. PubMed ID: 6459123 [TBL] [Abstract][Full Text] [Related]
29. Electrogenic proton translocation coupled to ATP hydrolysis by the plasma membrane Mg2+-dependent ATPase of yeast in reconstituted proteoliposomes. Villalobo A; Boutry M; Goffeau A J Biol Chem; 1981 Dec; 256(23):12081-7. PubMed ID: 6117557 [TBL] [Abstract][Full Text] [Related]
30. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217 [TBL] [Abstract][Full Text] [Related]
31. Uncoupling of oxidative phosphorylation: different effects of lipophilic weak acids and electrogenic ionophores on the kinetics of ATP synthesis. Matsuno-Yagi A; Hatefi Y Biochemistry; 1989 May; 28(10):4367-74. PubMed ID: 2475167 [TBL] [Abstract][Full Text] [Related]
32. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in bovine submitochondrial particles provide evidence for direct interaction between ATPase and NADH:Q oxidoreductase. Herweijer MA; Berden JA; Slater EC Biochim Biophys Acta; 1986 Apr; 849(2):276-87. PubMed ID: 2421768 [TBL] [Abstract][Full Text] [Related]
33. Mitochondrial H+-ATPase activation by an amine oxide detergent. Vázquez-Laslop N; Dreyfus G J Biol Chem; 1986 Jun; 261(17):7807-10. PubMed ID: 2872219 [TBL] [Abstract][Full Text] [Related]
34. [Redox regulation of the interaction between mitochondrial H+-ATPase and a natural protein inhibitor]. Kozlov IA; Khodzhaev EIu; Cherniak BV Dokl Akad Nauk SSSR; 1985; 281(6):1482-4. PubMed ID: 2863099 [No Abstract] [Full Text] [Related]
35. Electrochemical gradient induced displacement of the natural ATPase inhibitor protein from mitochondrial ATPase as directed by antibodies against the inhibitor protein. Dreyfus G; Gómez-Puyou A; Iuena de Gómez-Puyou M Biochem Biophys Res Commun; 1981 May; 100(1):400-6. PubMed ID: 6167259 [No Abstract] [Full Text] [Related]
36. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase. Solaini G; Tadolini B Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925 [TBL] [Abstract][Full Text] [Related]
37. Energy coupling in lysolecithin-treated submitochondrial particles. Komai H; Hunter DR; Southard JH; Haworth RA; Green DE Biochem Biophys Res Commun; 1976 Apr; 69(3):695-704. PubMed ID: 5087 [No Abstract] [Full Text] [Related]
38. IF1 function in situ in uncoupler-challenged ischemic rabbit, rat, and pigeon hearts. Rouslin W; Broge CW J Biol Chem; 1996 Sep; 271(39):23638-41. PubMed ID: 8798581 [TBL] [Abstract][Full Text] [Related]
39. Protonic inhibition of the mitochondrial adenosine 5'-triphosphatase in ischemic cardiac muscle. Reversible binding of the ATPase inhibitor protein to the mitochondrial ATPase during ischemia. Rouslin W; Pullman ME J Mol Cell Cardiol; 1987 Jul; 19(7):661-8. PubMed ID: 2960823 [TBL] [Abstract][Full Text] [Related]
40. Activation of a complex of ATPase with the natural protein inhibitor in submitochondrial particles. Khodjaev EYu ; Komarnitsky FB; Capozza G; Dukhovich VF; Chernyak BV; Papa S FEBS Lett; 1990 Oct; 272(1-2):145-8. PubMed ID: 2146159 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]