BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15716407)

  • 61. Functions of CXCL12 and CXCR4 in breast cancer.
    Luker KE; Luker GD
    Cancer Lett; 2006 Jul; 238(1):30-41. PubMed ID: 16046252
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reduced expression of stromal-derived factor 1 in autonomous thyroid adenomas and its regulation in thyroid-derived cells.
    Aust G; Steinert M; Kiessling S; Kamprad M; Simchen C
    J Clin Endocrinol Metab; 2001 Jul; 86(7):3368-76. PubMed ID: 11443213
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Clinical importance and therapeutic implications of the pivotal CXCL12-CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration.
    Arya M; Ahmed H; Silhi N; Williamson M; Patel HR
    Tumour Biol; 2007; 28(3):123-31. PubMed ID: 17510563
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation.
    Kukreja P; Abdel-Mageed AB; Mondal D; Liu K; Agrawal KC
    Cancer Res; 2005 Nov; 65(21):9891-8. PubMed ID: 16267013
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1, in the eyes of patients with primary intraocular lymphoma.
    Chan CC; Shen D; Hackett JJ; Buggage RR; Tuaillon N
    Ophthalmology; 2003 Feb; 110(2):421-6. PubMed ID: 12578791
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis.
    Arya M; Patel HR; McGurk C; Tatoud R; Klocker H; Masters J; Williamson M
    J Exp Ther Oncol; 2004 Dec; 4(4):291-303. PubMed ID: 15844659
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts.
    Wright LM; Maloney W; Yu X; Kindle L; Collin-Osdoby P; Osdoby P
    Bone; 2005 May; 36(5):840-53. PubMed ID: 15794931
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor.
    Lu M; Grove EA; Miller RJ
    Proc Natl Acad Sci U S A; 2002 May; 99(10):7090-5. PubMed ID: 11983855
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons.
    Pujol F; Kitabgi P; Boudin H
    J Cell Sci; 2005 Mar; 118(Pt 5):1071-80. PubMed ID: 15731012
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemokine signaling: rules of attraction.
    Schier AF
    Curr Biol; 2003 Mar; 13(5):R192-4. PubMed ID: 12620211
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of adhesion molecules and chemokine receptor CXCR4 (CD184) in small cell lung cancer.
    Hartmann TN; Burger M; Burger JA
    J Biol Regul Homeost Agents; 2004; 18(2):126-30. PubMed ID: 15471215
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Chemokine CXCL12 and its receptor CXCR4].
    Nagasawa T
    Nihon Rinsho; 2005 Aug; 63 Suppl 8():128-31. PubMed ID: 16149470
    [No Abstract]   [Full Text] [Related]  

  • 73. Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions.
    Lapidot T
    Ann N Y Acad Sci; 2001 Jun; 938():83-95. PubMed ID: 11458529
    [TBL] [Abstract][Full Text] [Related]  

  • 74. TCR activation inhibits chemotaxis toward stromal cell-derived factor-1: evidence for reciprocal regulation between CXCR4 and the TCR.
    Peacock JW; Jirik FR
    J Immunol; 1999 Jan; 162(1):215-23. PubMed ID: 9886389
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The CXCR4 agonist ligand stromal derived factor-1 maintains high affinity for receptors in both Galpha(i)-coupled and uncoupled states.
    Di Salvo J; Koch GE; Johnson KE; Blake AD; Daugherty BL; DeMartino JA; Sirotina-Meisher A; Liu Y; Springer MS; Cascieri MA; Sullivan KA
    Eur J Pharmacol; 2000 Dec; 409(2):143-54. PubMed ID: 11104827
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The calmodulin-stimulated adenylate cyclase ADCY8 sets the sensitivity of zebrafish retinal axons to midline repellents and is required for normal midline crossing.
    Xu H; Leinwand SG; Dell AL; Fried-Cassorla E; Raper JA
    J Neurosci; 2010 May; 30(21):7423-33. PubMed ID: 20505109
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pathfinding in a large vertebrate axon tract: isotypic interactions guide retinotectal axons at multiple choice points.
    Pittman AJ; Law MY; Chien CB
    Development; 2008 Sep; 135(17):2865-71. PubMed ID: 18653554
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature.
    Cha YR; Fujita M; Butler M; Isogai S; Kochhan E; Siekmann AF; Weinstein BM
    Dev Cell; 2012 Apr; 22(4):824-36. PubMed ID: 22516200
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium.
    Dalle Nogare D; Somers K; Rao S; Matsuda M; Reichman-Fried M; Raz E; Chitnis AB
    Development; 2014 Aug; 141(16):3188-96. PubMed ID: 25063456
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chemokine signaling guides regional patterning of the first embryonic artery.
    Siekmann AF; Standley C; Fogarty KE; Wolfe SA; Lawson ND
    Genes Dev; 2009 Oct; 23(19):2272-7. PubMed ID: 19797767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.