These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15717327)

  • 1. Effect of training datasets on support vector machine prediction of protein-protein interactions.
    Lo SL; Cai CZ; Chen YZ; Chung MC
    Proteomics; 2005 Mar; 5(4):876-84. PubMed ID: 15717327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of protein subcellular localization.
    Yu CS; Chen YC; Lu CH; Hwang JK
    Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An SVM-based system for predicting protein subnuclear localizations.
    Lei Z; Dai Y
    BMC Bioinformatics; 2005 Dec; 6():291. PubMed ID: 16336650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.
    An JY; You ZH; Meng FR; Xu SJ; Wang Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure.
    Lewis DP; Jebara T; Noble WS
    Bioinformatics; 2006 Nov; 22(22):2753-60. PubMed ID: 16966363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of machine learning algorithms to classify binary protein sequences as highly-designable or poorly-designable.
    Peto M; Kloczkowski A; Honavar V; Jernigan RL
    BMC Bioinformatics; 2008 Nov; 9():487. PubMed ID: 19014713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering high-throughput protein-protein interaction data using a combination of genomic features.
    Patil A; Nakamura H
    BMC Bioinformatics; 2005 Apr; 6():100. PubMed ID: 15833142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.
    An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP
    Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of RNA-binding proteins from primary sequence by a support vector machine approach.
    Han LY; Cai CZ; Lo SL; Chung MC; Chen YZ
    RNA; 2004 Mar; 10(3):355-68. PubMed ID: 14970381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization.
    Huang WL; Tung CW; Ho SW; Hwang SF; Ho SY
    BMC Bioinformatics; 2008 Feb; 9():80. PubMed ID: 18241343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences.
    Guo Y; Yu L; Wen Z; Li M
    Nucleic Acids Res; 2008 May; 36(9):3025-30. PubMed ID: 18390576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGsub: Fusarium graminearum protein subcellular localizations predicted from primary structures.
    Sun C; Zhao XM; Tang W; Chen L
    BMC Syst Biol; 2010 Sep; 4 Suppl 2(Suppl 2):S12. PubMed ID: 20840726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational identification of ubiquitylation sites from protein sequences.
    Tung CW; Ho SY
    BMC Bioinformatics; 2008 Jul; 9():310. PubMed ID: 18625080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosylation site prediction using ensembles of Support Vector Machine classifiers.
    Caragea C; Sinapov J; Silvescu A; Dobbs D; Honavar V
    BMC Bioinformatics; 2007 Nov; 8():438. PubMed ID: 17996106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two multi-classification strategies used on SVM to predict protein structural classes by using auto covariance.
    Wu J; Li YZ; Li ML; Yu LZ
    Interdiscip Sci; 2009 Dec; 1(4):315-9. PubMed ID: 20640811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.
    Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA
    Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly accurate prediction of protein self-interactions by incorporating the average block and PSSM information into the general PseAAC.
    Zhai JX; Cao TJ; An JY; Bian YT
    J Theor Biol; 2017 Nov; 432():80-86. PubMed ID: 28802824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.