These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15717789)

  • 21. Influence of operating parameters on the arsenic removal by nanofiltration.
    Figoli A; Cassano A; Criscuoli A; Mozumder MS; Uddin MT; Islam MA; Drioli E
    Water Res; 2010 Jan; 44(1):97-104. PubMed ID: 19781734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenic removal from groundwater by a newly developed adsorbent.
    Takanashi H; Tanaka A; Nakajima T; Ohki A
    Water Sci Technol; 2004; 50(8):23-32. PubMed ID: 15566183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of supporting membrane on removal of cadmium by the hybrid liquid membrane process.
    Garmsiri M; Mortaheb HR; Amini MH
    Environ Technol; 2015; 36(1-4):366-76. PubMed ID: 25337970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water.
    Martínez-Villafañe JF; Montero-Ocampo C; García-Lara AM
    J Hazard Mater; 2009 Dec; 172(2-3):1617-22. PubMed ID: 19747771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of hydrophobic and hydrophilic nanoparticles loaded in D2EHPA/M2EHPA - PTFE supported liquid membrane for simultaneous cationic dyes pertraction.
    Mahdavi HR; Arzani M; Isanejad M; Mohammadi T
    J Environ Manage; 2018 May; 213():288-296. PubMed ID: 29502014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of copper speciation in estuarine water measured using analytical voltammetry and supported liquid membrane techniques.
    Ndungu K; Hurst MP; Bruland KW
    Environ Sci Technol; 2005 May; 39(9):3166-75. PubMed ID: 15926567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective removal of gallium (III) from aqueous solutions containing zinc or aluminum using sodium di-(n-octyl) phosphinate.
    Dumortier R; Rodil E; Weber ME; Vera JH
    Water Res; 2004 Apr; 38(7):1745-52. PubMed ID: 15026228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Common fern may aid communities coping with arsenic contamination.
    Gorss J
    Environ Sci Technol; 2004 Jun; 38(12):219A-220A. PubMed ID: 15260311
    [No Abstract]   [Full Text] [Related]  

  • 29. [Application of pressure-driven membrane technologies for the removal of arsenic from drinking water].
    Li X; Hu B; Gu P
    Wei Sheng Yan Jiu; 2007 May; 36(3):395-8. PubMed ID: 17712970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect.
    Cumbal L; Sengupta AK
    Environ Sci Technol; 2005 Sep; 39(17):6508-15. PubMed ID: 16190206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges for critical raw material recovery from WEEE - The case study of gallium.
    Ueberschaar M; Otto SJ; Rotter VS
    Waste Manag; 2017 Feb; 60():534-545. PubMed ID: 28089397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent.
    Awual MR; Shenashen MA; Yaita T; Shiwaku H; Jyo A
    Water Res; 2012 Nov; 46(17):5541-5550. PubMed ID: 22901303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation.
    Lee Y; Um IH; Yoon J
    Environ Sci Technol; 2003 Dec; 37(24):5750-6. PubMed ID: 14717190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study on arsenic removal from household drinking water.
    Yuan T; Luo QF; Hu JY; Ong SL; Ng WJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Sep; 38(9):1731-44. PubMed ID: 12940478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of arsenic from contaminated groundwater by solar-driven membrane distillation.
    Manna AK; Sen M; Martin AR; Pal P
    Environ Pollut; 2010 Mar; 158(3):805-11. PubMed ID: 19883961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of arsenic on flyash.
    Nagarnaik PB; Bhole AG; Natarajan GS
    Indian J Environ Health; 2003 Jan; 45(1):1-4. PubMed ID: 14723275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery of water and acid from leach solutions using direct contact membrane distillation.
    Kesieme UK; Milne N; Cheng CY; Aral H; Duke M
    Water Sci Technol; 2014; 69(4):868-75. PubMed ID: 24569289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of operating conditions on the separation of ammonium and nitrate ions with nanofiltration and reverse osmosis membranes.
    Koyuncu I
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Aug; 37(7):1347-59. PubMed ID: 15328697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Treatment of Stainless Steel Rinse Waters Using Non-Dispersive Extraction and Strip Dispersion Membrane Technology.
    Alguacil FJ; Robla JI
    Membranes (Basel); 2023 Dec; 13(12):. PubMed ID: 38132906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water.
    Kumar M; RaoT S; Isloor AM; Ibrahim GPS; Inamuddin ; Ismail N; Ismail AF; Asiri AM
    Int J Biol Macromol; 2019 May; 129():715-727. PubMed ID: 30738161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.