These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 15718103)
1. Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 (EIF4G2). Takahashi K; Maruyama M; Tokuzawa Y; Murakami M; Oda Y; Yoshikane N; Makabe KW; Ichisaka T; Yamanaka S Genomics; 2005 Mar; 85(3):360-71. PubMed ID: 15718103 [TBL] [Abstract][Full Text] [Related]
2. A new translational regulator with homology to eukaryotic translation initiation factor 4G. Imataka H; Olsen HS; Sonenberg N EMBO J; 1997 Feb; 16(4):817-25. PubMed ID: 9049310 [TBL] [Abstract][Full Text] [Related]
3. Drosophila NAT1, a homolog of the vertebrate translational regulator NAT1/DAP5/p97, is required for embryonic germband extension and metamorphosis. Yoshikane N; Nakamura N; Ueda R; Ueno N; Yamanaka S; Nakamura M Dev Growth Differ; 2007 Sep; 49(7):623-34. PubMed ID: 17716306 [TBL] [Abstract][Full Text] [Related]
4. Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide. Tang L; Morris J; Wan J; Moore C; Fujita Y; Gillaspie S; Aube E; Nanda J; Marques M; Jangal M; Anderson A; Cox C; Hiraishi H; Dong L; Saito H; Singh CR; Witcher M; Topisirovic I; Qian SB; Asano K Nucleic Acids Res; 2017 Nov; 45(20):11941-11953. PubMed ID: 28981728 [TBL] [Abstract][Full Text] [Related]
5. Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Kearse MG; Goldman DH; Choi J; Nwaezeapu C; Liang D; Green KM; Goldstrohm AC; Todd PK; Green R; Wilusz JE Genes Dev; 2019 Jul; 33(13-14):871-885. PubMed ID: 31171704 [TBL] [Abstract][Full Text] [Related]
6. Translation of psbC mRNAs starts from the downstream GUG, not the upstream AUG, and requires the extended Shine-Dalgarno sequence in tobacco chloroplasts. Kuroda H; Suzuki H; Kusumegi T; Hirose T; Yukawa Y; Sugiura M Plant Cell Physiol; 2007 Sep; 48(9):1374-8. PubMed ID: 17664183 [TBL] [Abstract][Full Text] [Related]
7. Translation initiation at non-AUG codons mediated by weakened association of eukaryotic initiation factor (eIF) 2 subunits. Hashimoto NN; Carnevalli LS; Castilho BA Biochem J; 2002 Oct; 367(Pt 2):359-68. PubMed ID: 12137565 [TBL] [Abstract][Full Text] [Related]
8. Negative and translation termination-dependent positive control of FLI-1 protein synthesis by conserved overlapping 5' upstream open reading frames in Fli-1 mRNA. Sarrazin S; Starck J; Gonnet C; Doubeikovski A; Melet F; Morle F Mol Cell Biol; 2000 May; 20(9):2959-69. PubMed ID: 10757781 [TBL] [Abstract][Full Text] [Related]
9. The +4G site in Kozak consensus is not related to the efficiency of translation initiation. Xia X PLoS One; 2007 Feb; 2(2):e188. PubMed ID: 17285142 [TBL] [Abstract][Full Text] [Related]
10. Translation of p15.5INK4B, an N-terminally extended and fully active form of p15INK4B, is initiated from an upstream GUG codon. Fuxe J; Raschperger E; Pettersson RF Oncogene; 2000 Mar; 19(13):1724-8. PubMed ID: 10763830 [TBL] [Abstract][Full Text] [Related]
11. The influence of AUG codons in the hepatitis C virus 5' nontranslated region on translation and mapping of the translation initiation window. Rijnbrand RC; Abbink TE; Haasnoot PC; Spaan WJ; Bredenbeek PJ Virology; 1996 Dec; 226(1):47-56. PubMed ID: 8941321 [TBL] [Abstract][Full Text] [Related]
12. Initiation of translation at CUG, GUG, and ACG codons in mammalian cells. Mehdi H; Ono E; Gupta KC Gene; 1990 Jul; 91(2):173-8. PubMed ID: 2170233 [TBL] [Abstract][Full Text] [Related]
13. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. Miyakawa S; Oguro A; Ohtsu T; Imataka H; Sonenberg N; Nakamura Y RNA; 2006 Oct; 12(10):1825-34. PubMed ID: 16940549 [TBL] [Abstract][Full Text] [Related]
14. NAT1/DAP5/p97 and atypical translational control in the Drosophila Circadian Oscillator. Bradley S; Narayanan S; Rosbash M Genetics; 2012 Nov; 192(3):943-57. PubMed ID: 22904033 [TBL] [Abstract][Full Text] [Related]
15. A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. Sanz MA; Almela EG; GarcĂa-Moreno M; Marina AI; Carrasco L RNA; 2019 Apr; 25(4):431-452. PubMed ID: 30659060 [TBL] [Abstract][Full Text] [Related]
16. Communication between eukaryotic translation initiation factors 5 and 1A within the ribosomal pre-initiation complex plays a role in start site selection. Maag D; Algire MA; Lorsch JR J Mol Biol; 2006 Feb; 356(3):724-37. PubMed ID: 16380131 [TBL] [Abstract][Full Text] [Related]
17. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Liu Y; Cui J; Hoffman AR; Hu JF Cell Prolif; 2023 Mar; 56(3):e13367. PubMed ID: 36547008 [TBL] [Abstract][Full Text] [Related]
18. AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site. Kochetov AV; Palyanov A; Titov II; Grigorovich D; Sarai A; Kolchanov NA BMC Bioinformatics; 2007 Aug; 8():318. PubMed ID: 17760957 [TBL] [Abstract][Full Text] [Related]
19. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Kozak M Mol Cell Biol; 1989 Nov; 9(11):5073-80. PubMed ID: 2601709 [TBL] [Abstract][Full Text] [Related]
20. Truncated forms of the dual function human ASCT2 neutral amino acid transporter/retroviral receptor are translationally initiated at multiple alternative CUG and GUG codons. Tailor CS; Marin M; Nouri A; Kavanaugh MP; Kabat D J Biol Chem; 2001 Jul; 276(29):27221-30. PubMed ID: 11350958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]