These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Ohmoto H; Kakegawa T; Lowe DR Science; 1993 Oct; 262():555-7. PubMed ID: 11539502 [TBL] [Abstract][Full Text] [Related]
23. Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Turchyn AV; Schrag DP Science; 2004 Mar; 303(5666):2004-7. PubMed ID: 15044800 [TBL] [Abstract][Full Text] [Related]
26. The Archean sulfur cycle and the early history of atmospheric oxygen. Canfield DE; Habicht KS; Thamdrup B Science; 2000 Apr; 288(5466):658-61. PubMed ID: 10784446 [TBL] [Abstract][Full Text] [Related]
27. Sulfate clues for the early history of atmospheric oxygen. Paytan A Science; 2000 Apr; 288(5466):626-7. PubMed ID: 10798999 [No Abstract] [Full Text] [Related]
28. Reactive iron in marine sediments. Canfield DE Geochim Cosmochim Acta; 1989; 53():619-32. PubMed ID: 11539783 [TBL] [Abstract][Full Text] [Related]
29. Oceans. Iron and the carbon pump. Sunda WG Science; 2010 Feb; 327(5966):654-5. PubMed ID: 20133563 [No Abstract] [Full Text] [Related]
30. Explaining the structure of the Archean mass-independent sulfur isotope record. Halevy I; Johnston DT; Schrag DP Science; 2010 Jul; 329(5988):204-7. PubMed ID: 20508089 [TBL] [Abstract][Full Text] [Related]
31. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598 [TBL] [Abstract][Full Text] [Related]
32. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age. Jaccard SL; Galbraith ED; Martínez-García A; Anderson RF Nature; 2016 Feb; 530(7589):207-10. PubMed ID: 26840491 [TBL] [Abstract][Full Text] [Related]
33. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean. von der Heyden BP; Roychoudhury AN; Mtshali TN; Tyliszczak T; Myneni SC Science; 2012 Nov; 338(6111):1199-201. PubMed ID: 23197531 [TBL] [Abstract][Full Text] [Related]
34. Widespread iron-rich conditions in the mid-Proterozoic ocean. Planavsky NJ; McGoldrick P; Scott CT; Li C; Reinhard CT; Kelly AE; Chu X; Bekker A; Love GD; Lyons TW Nature; 2011 Sep; 477(7365):448-51. PubMed ID: 21900895 [TBL] [Abstract][Full Text] [Related]
36. Iron-sulfide and trace element behaviour in sediments of Coombabah Lake, southern Moreton Bay (Australia). Burton ED; Sullivan LA; Bush RT; Powell B Mar Pollut Bull; 2008 Jul; 56(7):1353-8. PubMed ID: 18502448 [No Abstract] [Full Text] [Related]
37. Arsenic stress after the Proterozoic glaciations. Fru EC; Arvestål E; Callac N; El Albani A; Kilias S; Argyraki A; Jakobsson M Sci Rep; 2015 Dec; 5():17789. PubMed ID: 26635187 [TBL] [Abstract][Full Text] [Related]
38. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere. Pogge von Strandmann PA; Stüeken EE; Elliott T; Poulton SW; Dehler CM; Canfield DE; Catling DC Nat Commun; 2015 Dec; 6():10157. PubMed ID: 26679529 [TBL] [Abstract][Full Text] [Related]
39. Palaeoclimate: the riddle of the sediments. Siddall M Nature; 2005 Sep; 437(7055):39-41. PubMed ID: 16136118 [No Abstract] [Full Text] [Related]