These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15718721)

  • 1. Development of a navigation function for an endosocopic robot surgery system.
    Hattori A; Suzuki N; Hayashibe M; Suzuki S; Otake Y; Tajiri H; Kobayashi S
    Stud Health Technol Inform; 2005; 111():167-71. PubMed ID: 15718721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Telecontrol function of an endoscopic surgical robot with two hands for tele-NOTES surgery.
    Suzuki S; Suzuki N; Hattori A; Otake Y; Hashizume M
    Stud Health Technol Inform; 2008; 132():511-3. PubMed ID: 18391358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a surgical robot system for endovascular surgery with augmented reality function.
    Suzuki N; Hattori A; Suzuki S; Otake Y
    Stud Health Technol Inform; 2007; 125():460-3. PubMed ID: 17377326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a real-time image-guided surgery system for stereo-endoscopic sinus surgery.
    Hattori A; Suzuki N; Otori N; Iimura J; Moriyama H
    Stud Health Technol Inform; 2009; 142():112-6. PubMed ID: 19377126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tele-control of an endoscopic surgical robot system between Japan and Thailand for tele-NOTES.
    Suzuki N; Hattori A; Ieiri S; Konishi K; Maeda T; Fujino Y; Ueda Y; Navicharern P; Tanoue K; Hashizume M
    Stud Health Technol Inform; 2009; 142():374-9. PubMed ID: 19377187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robotic surgery system (da Vinci) with image guided function--system architecture and cholecystectomy application.
    Hattori A; Suzuki N; Hashizume M; Akahoshi T; Konishi K; Yamaguchi S; Shimada M; Hayashibe M
    Stud Health Technol Inform; 2003; 94():110-6. PubMed ID: 15455874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The recent study and key technologies of an aided endoscopic surgical robot system].
    Zhang JA; Lin LM; Wang GM
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Jan; 26(1):54-8. PubMed ID: 16104161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a robotic navigation system for neurosurgery.
    Tseng CS; Chung CW; Chen HH; Wang SS; Tseng HM
    Stud Health Technol Inform; 1999; 62():358-9. PubMed ID: 10538386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A system for simulation and monitoring of robot-assisted and navigation-assisted surgical interventions. (Part 1).
    Stien M; Hein A; Szymanski D; Lueth T
    Stud Health Technol Inform; 2002; 85():501-3. PubMed ID: 15458140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery.
    Nimsky Ch; Rachinger J; Iro H; Fahlbusch R
    Minim Invasive Neurosurg; 2004 Feb; 47(1):41-6. PubMed ID: 15100931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A vision guided hybrid robotic prototype system for stereotactic surgery.
    Wei J; Wang T; Liu D
    Int J Med Robot; 2011 Dec; 7(4):475-81. PubMed ID: 21984231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic and imaging in urological surgery.
    Teber D; Baumhauer M; Guven EO; Rassweiler J
    Curr Opin Urol; 2009 Jan; 19(1):108-13. PubMed ID: 19057226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of medical robot-assisted surgical navigation system in distal locking of femoral intramedullary nails: an experimental study].
    Wang JQ; Wang JF; Hu L; Su YG; Wang Y; Zhao CP; Zhou L; Wang TM; Wang MY
    Zhonghua Yi Xue Za Zhi; 2006 Mar; 86(9):614-8. PubMed ID: 16681907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automated robotic approach with redundant navigation for minimal invasive extended transsphenoidal skull base surgery.
    Bumm K; Wurm J; Rachinger J; Dannenmann T; Bohr C; Fahlbusch R; Iro H; Nimsky C
    Minim Invasive Neurosurg; 2005 Jun; 48(3):159-64. PubMed ID: 16015493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technological advances in robotic-assisted laparoscopic surgery.
    Tan GY; Goel RK; Kaouk JH; Tewari AK
    Urol Clin North Am; 2009 May; 36(2):237-49, ix. PubMed ID: 19406324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.
    Hayashibe M; Suzuki N; Hattori A; Suzuki S; Konishi K; Kakeji Y; Hashizume M
    Stud Health Technol Inform; 2005; 111():164-6. PubMed ID: 15718720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surgical robotics and image guided therapy in pediatric surgery: emerging and converging minimal access technologies.
    Chandra V; Dutta S; Albanese CT
    Semin Pediatr Surg; 2006 Nov; 15(4):267-75. PubMed ID: 17055957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An image-guided magnetic resonance-compatible surgical robot.
    Sutherland GR; Latour I; Greer AD; Fielding T; Feil G; Newhook P
    Neurosurgery; 2008 Feb; 62(2):286-92; discussion 292-3. PubMed ID: 18382307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted minimally invasive lung brachytherapy.
    Trejos AL; Lin AW; Pytel MP; Patel RV; Malthaner RA
    Int J Med Robot; 2007 Mar; 3():41-51. PubMed ID: 17441025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.