BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15718730)

  • 1. Computational simulation of penetrating trauma in biological soft tissues using the material point method.
    Ionescu I; Guilkey J; Berzins M; Kirby RM; Weiss J
    Stud Health Technol Inform; 2005; 111():213-8. PubMed ID: 15718730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of soft tissue failure using the material point method.
    Ionescu I; Guilkey JE; Berzins M; Kirby RM; Weiss JA
    J Biomech Eng; 2006 Dec; 128(6):917-24. PubMed ID: 17154694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic injury simulation using the material point method.
    Ionescu I; Weiss JA; Guilkey J; Cole M; Kirby RM; Berzins M
    Stud Health Technol Inform; 2006; 119():228-33. PubMed ID: 16404050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution.
    Taylor ZA; Comas O; Cheng M; Passenger J; Hawkes DJ; Atkinson D; Ourselin S
    Med Image Anal; 2009 Apr; 13(2):234-44. PubMed ID: 19019721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations.
    Un K; Spilker RL
    J Biomech Eng; 2006 Dec; 128(6):934-42. PubMed ID: 17154696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical characterization of anisotropic planar biological soft tissues using large indentation: a computational feasibility study.
    Cox MA; Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2006 Jun; 128(3):428-36. PubMed ID: 16706592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive determination of ligament strain with deformable image registration.
    Phatak NS; Sun Q; Kim SE; Parker DL; Sanders RK; Veress AI; Ellis BJ; Weiss JA
    Ann Biomed Eng; 2007 Jul; 35(7):1175-87. PubMed ID: 17394084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft-cuticle biomechanics: a constitutive model of anisotropy for caterpillar integument.
    Lin HT; Dorfmann AL; Trimmer BA
    J Theor Biol; 2009 Feb; 256(3):447-57. PubMed ID: 19014955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new constitutive model for multi-layered collagenous tissues.
    Kroon M; Holzapfel GA
    J Biomech; 2008 Aug; 41(12):2766-71. PubMed ID: 18657813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of anisotropic growth in biological tissues. A new approach and computational aspects.
    Menzel A
    Biomech Model Mechanobiol; 2005 Mar; 3(3):147-71. PubMed ID: 15778872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber-based fracture model for simulating soft tissue tearing.
    Allard J; Marchal M; Cotin S
    Stud Health Technol Inform; 2009; 142():13-8. PubMed ID: 19377103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realistic soft tissue deformation strategies for real time surgery simulation.
    Shen Y; Zhou X; Zhang N; Tamma K; Sweet R
    Stud Health Technol Inform; 2008; 132():457-9. PubMed ID: 18391343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dressing type on 3D tissue microdeformations during negative pressure wound therapy: a computational study.
    Wilkes R; Zhao Y; Kieswetter K; Haridas B
    J Biomech Eng; 2009 Mar; 131(3):031012. PubMed ID: 19154071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling of multicellular constructs with the material point method.
    Guilkey JE; Hoying JB; Weiss JA
    J Biomech; 2006; 39(11):2074-86. PubMed ID: 16095601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A constitutive model of the posterior cruciate ligament.
    Limbert G; Middleton J
    Med Eng Phys; 2006 Mar; 28(2):99-113. PubMed ID: 15919227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three dimensional electromechanical model of porcine heart with penetrating wound injury.
    Usyk T; Kerckhoffs R
    Stud Health Technol Inform; 2005; 111():568-73. PubMed ID: 15718799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic finite element modeling of poroviscoelastic soft tissue.
    Yang Z; Smolinski P
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):7-16. PubMed ID: 16880152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.