These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15718746)

  • 1. A mechanical contact model for the simulation of obstetric forceps delivery in a virtual/augmented environment.
    Lapeer RJ
    Stud Health Technol Inform; 2005; 111():284-9. PubMed ID: 15718746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The delivery simulator: a new application of medical VR.
    Obst T; Burgkart R; Ruckhäberle E; Riener R
    Stud Health Technol Inform; 2004; 98():281-7. PubMed ID: 15544290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer-based simulation of obstetric forceps placement.
    Lapeer R; Audinis V; Gerikhanov Z; Dupuis O
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):57-64. PubMed ID: 25485363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computer-based simulation of childbirth using the partial Dirichlet-Neumann contact method with total Lagrangian explicit dynamics on the GPU.
    Lapeer R; Gerikhanov Z; Sadulaev SM; Audinis V; Rowland R; Crozier K; Morris E
    Biomech Model Mechanobiol; 2019 Jun; 18(3):681-700. PubMed ID: 30635852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pervasive visual-haptic framework for virtual delivery training.
    Abate AF; Acampora G; Loia V; Ricciardi S; Vasilakos AV
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):326-34. PubMed ID: 20659831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed reality temporal bone surgical dissector: mechanical design.
    Hochman JB; Sepehri N; Rampersad V; Kraut J; Khazraee M; Pisa J; Unger B
    J Otolaryngol Head Neck Surg; 2014 Aug; 43(1):23. PubMed ID: 25927300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimanual haptic workstation for laparoscopic surgery simulation.
    Devarajan V; Scott D; Jones D; Rege R; Eberhart R; Lindahl C; Tanguy P; Fernandez R
    Stud Health Technol Inform; 2001; 81():126-8. PubMed ID: 11317725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Newly developed haptic forceps enables sensitive, real-time measurements of organ elasticity.
    Atsuta K; Ozawa S; Shimojima N; Shimono T; Susa S; Takei T; Ohnishi K; Morikawa Y
    Minim Invasive Ther Allied Technol; 2010 Jun; 19(3):177-83. PubMed ID: 20158411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VIRGY: a virtual reality and force feedback based endoscopic surgery simulator.
    Baur C; Guzzoni D; Georg O
    Stud Health Technol Inform; 1998; 50():110-6. PubMed ID: 10180525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastodynamic shape modeler: a tool for defining the deformation behavior of virtual tissues.
    Radetzky A; Nürnberger A; Pretschner DP
    Radiographics; 2000; 20(3):865-81. PubMed ID: 10835133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of forceps use in obstetrics during a simulated childbirth.
    Moreau R; Pham MT; Brun X; Redarce T; Dupuis O
    Int J Med Robot; 2008 Dec; 4(4):373-80. PubMed ID: 19006201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A haptic interface for virtual simulation of endoscopic surgery.
    Rosenberg LB; Stredney D
    Stud Health Technol Inform; 1996; 29():371-87. PubMed ID: 10172846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient and scalable deformable model for virtual reality-based medical applications.
    Choi KS; Sun H; Heng PA
    Artif Intell Med; 2004 Sep; 32(1):51-69. PubMed ID: 15350624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual-reality-based laparoscopic surgical training: the role of simulation fidelity in haptic feedback.
    Kim HK; Rattner DW; Srinivasan MA
    Comput Aided Surg; 2004; 9(5):227-34. PubMed ID: 16192064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [VRATS--Virtual Reality Arthroscopy Training Simulator].
    Müller W; Bockholt U; Lahmer A; Voss G; Börner M
    Radiologe; 2000 Mar; 40(3):290-4. PubMed ID: 10789129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force feedback for virtual reality based minimally invasive surgery simulator.
    Baumann R; Glauser D; Tappy D; Baur C; Clavel R
    Stud Health Technol Inform; 1996; 29():564-79. PubMed ID: 10172850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and implementation of haptic virtual environments for the training of the visually impaired.
    Tzovaras D; Nikolakis G; Fergadis G; Malasiotis S; Stavrakis M
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):266-78. PubMed ID: 15218940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.