These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15718810)

  • 21. GPU-based acceleration of computations in nonlinear finite element deformation analysis.
    Mafi R; Sirouspour S
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):365-81. PubMed ID: 24166875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast finite elements for surgery simulation.
    Bro-Nielsen M
    Stud Health Technol Inform; 1997; 39():395-400. PubMed ID: 10173064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyperelastic modelling and parametric study of soft tissue embedded lump for MIS applications.
    Sokhanvar S; Dargahi J; Packirisamy M
    Int J Med Robot; 2008 Sep; 4(3):232-41. PubMed ID: 18698669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards anatomical modelling of multiple organs interaction using real time GPU based non-linear elasticity.
    Cheng M; Taylor ZA; Ourselin S
    Stud Health Technol Inform; 2008; 132():77-82. PubMed ID: 18391261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery.
    Basafa E; Farahmand F; Vossoughi G
    Stud Health Technol Inform; 2008; 132():23-5. PubMed ID: 18391249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An automatic robust meshing algorithm for soft tissue modeling.
    Seifert S; Boehler S; Sudra G; Dillmann R
    Stud Health Technol Inform; 2005; 111():443-6. PubMed ID: 15718775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stiffness matrix representation of hyper-elasticity for surgical simulation and navigation.
    Nishiyama S; Kuroda Y; Takemura H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():905-8. PubMed ID: 26736409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting.
    Portnoy S; Yarnitzky G; Yizhar Z; Kristal A; Oppenheim U; Siev-Ner I; Gefen A
    Ann Biomed Eng; 2007 Jan; 35(1):120-35. PubMed ID: 17120139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations.
    Un K; Spilker RL
    J Biomech Eng; 2006 Dec; 128(6):934-42. PubMed ID: 17154696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite element analysis of an elastic model of the brain: distortion due to acute epidural hematoma--the role of the intra-ventricular pressure gradient.
    Saberi H; Seddighi AS; Farmanzad F
    Comput Aided Surg; 2007 Mar; 12(2):131-6. PubMed ID: 17487663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Finite element analysis in simulations of ultrasonic elastography].
    Zhao T; Yan B; Niu W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):138-41, 147. PubMed ID: 21485201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element based mechanical models of the cornea for pressure and indenter loading.
    Vito RP; Carnell PH
    Refract Corneal Surg; 1992; 8(2):146-51. PubMed ID: 1591210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deformation simulation algorithms of elastic tissues in "real-time" based in elasticity theory.
    Monserrat Aranda C; Juan Lizandra MC; AlcaƱiz Raya M; Grau Colomer V; Knoll C
    Stud Health Technol Inform; 1999; 62():21-2. PubMed ID: 10538358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient topology modification and deformation for finite element models using condensation.
    Lee B; Popescu DC; Joshi B; Ourselin S
    Stud Health Technol Inform; 2006; 119():299-304. PubMed ID: 16404066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry.
    Glynne-Jones P; Mishra PP; Boltryk RJ; Hill M
    J Acoust Soc Am; 2013 Apr; 133(4):1885-93. PubMed ID: 23556558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.