These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15719020)

  • 21. Cellular iron utilization is regulated by putative siderophore transporter FgSit1 not by free iron transporter in Fusarium graminearum.
    Park YS; Kim TH; Chang HI; Sung HC; Yun CW
    Biochem Biophys Res Commun; 2006 Jul; 345(4):1634-42. PubMed ID: 16750173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Properties of the cysteine-less Pho84 phosphate transporter of Saccharomyces cerevisiae.
    Berhe A; Zvyagilskaya R; Lagerstedt JO; Pratt JR; Persson BL
    Biochem Biophys Res Commun; 2001 Oct; 287(4):837-42. PubMed ID: 11573939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome.
    Bilodeau PS; Winistorfer SC; Kearney WR; Robertson AD; Piper RC
    J Cell Biol; 2003 Oct; 163(2):237-43. PubMed ID: 14581452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assembly, activation, and trafficking of the Fet3p.Ftr1p high affinity iron permease complex in Saccharomyces cerevisiae.
    Singh A; Severance S; Kaur N; Wiltsie W; Kosman DJ
    J Biol Chem; 2006 May; 281(19):13355-13364. PubMed ID: 16522632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Demonstration of the functional role of conserved Glu-Arg residues in the Staphylococcus aureus ferrichrome transporter.
    Vinés ED; Speziali CD; Heinrichs DE
    Biometals; 2014 Feb; 27(1):143-53. PubMed ID: 24362930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily.
    Lesuisse E; Simon-Casteras M; Labbe P
    Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3455-3462. PubMed ID: 9884238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Pam16's degenerate J domain in protein import across the mitochondrial inner membrane.
    D'Silva PR; Schilke B; Walter W; Craig EA
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12419-24. PubMed ID: 16105940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of ferrichrome- and ferrioxamine B-mediated iron uptake by Aspergillus fumigatus.
    Park YS; Kim JY; Yun CW
    Biochem J; 2016 May; 473(9):1203-13. PubMed ID: 26929401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct binding to Rsp5p regulates ubiquitination-independent vacuolar transport of Sna3p.
    Watson H; Bonifacino JS
    Mol Biol Cell; 2007 May; 18(5):1781-9. PubMed ID: 17332499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae.
    Lesuisse E; Knight SA; Camadro JM; Dancis A
    Yeast; 2002 Mar; 19(4):329-40. PubMed ID: 11870856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain.
    Slagsvold T; Aasland R; Hirano S; Bache KG; Raiborg C; Trambaiolo D; Wakatsuki S; Stenmark H
    J Biol Chem; 2005 May; 280(20):19600-6. PubMed ID: 15755741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tpn1p, the plasma membrane vitamin B6 transporter of Saccharomyces cerevisiae.
    Stolz J; Vielreicher M
    J Biol Chem; 2003 May; 278(21):18990-6. PubMed ID: 12649274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane.
    Kwok EY; Severance S; Kosman DJ
    Biochemistry; 2006 May; 45(20):6317-27. PubMed ID: 16700543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways.
    Samyn DR; Ruiz-Pávon L; Andersson MR; Popova Y; Thevelein JM; Persson BL
    Biochem J; 2012 Aug; 445(3):413-22. PubMed ID: 22587366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural insights into cargo recognition by the yeast PTS1 receptor.
    Hagen S; Drepper F; Fischer S; Fodor K; Passon D; Platta HW; Zenn M; Schliebs W; Girzalsky W; Wilmanns M; Warscheid B; Erdmann R
    J Biol Chem; 2015 Oct; 290(44):26610-26. PubMed ID: 26359497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulations of the periplasmic ferric-hydroxamate binding protein FhuD.
    Krewulak KD; Shepherd CM; Vogel HJ
    Biometals; 2005 Aug; 18(4):375-86. PubMed ID: 16158230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorting signals within the Saccharomyces cerevisiae sporulation-specific dityrosine transporter, Dtr1p, C terminus promote Golgi-to-prospore membrane transport.
    Morishita M; Engebrecht J
    Eukaryot Cell; 2008 Oct; 7(10):1674-84. PubMed ID: 18676951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae.
    Haro R; Rodríguez-Navarro A
    Biochim Biophys Acta; 2002 Aug; 1564(1):114-22. PubMed ID: 12101003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide.
    Ferguson AD; Hofmann E; Coulton JW; Diederichs K; Welte W
    Science; 1998 Dec; 282(5397):2215-20. PubMed ID: 9856937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for a dynamic role for proline376 in the purine-cytosine permease of Saccharomyces cerevisiae.
    Ferreira T; Napias C; Chevallier J; Brèthes D
    Eur J Biochem; 1999 Jul; 263(1):57-64. PubMed ID: 10429187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.