These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 15719165)
1. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Gabriel MC; Williamson DG Environ Geochem Health; 2004 Dec; 26(4):421-34. PubMed ID: 15719165 [TBL] [Abstract][Full Text] [Related]
2. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): implications for the mercury cycle. Windmöller CC; Durão Júnior WA; de Oliveira A; do Valle CM Ecotoxicol Environ Saf; 2015 Feb; 112():201-11. PubMed ID: 25463872 [TBL] [Abstract][Full Text] [Related]
3. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania. Ikingura JR; Akagi H; Mujumba J; Messo C J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263 [TBL] [Abstract][Full Text] [Related]
4. The influence of humic substances on the speciation and bioavailability of dissolved mercury and methylmercury, measured as uptake by Chaoborus larvae and loss by volatilization. Sjöblom A; Meili M; Sundbom M Sci Total Environ; 2000 Oct; 261(1-3):115-24. PubMed ID: 11036983 [TBL] [Abstract][Full Text] [Related]
5. Potential bioavailability of mercury in humus-coated clay minerals. Zhu D; Zhong H J Environ Sci (China); 2015 Oct; 36():48-55. PubMed ID: 26456605 [TBL] [Abstract][Full Text] [Related]
6. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand. Craw D J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268 [TBL] [Abstract][Full Text] [Related]
7. Predicting soil-water partition coefficients for Hg(II) from soil properties. Lee SZ; Chang L; Chen CM; Tsai YI; Liu MC Water Sci Technol; 2001; 43(2):187-96. PubMed ID: 11380179 [TBL] [Abstract][Full Text] [Related]
8. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Zhang T; Kim B; Levard C; Reinsch BC; Lowry GV; Deshusses MA; Hsu-Kim H Environ Sci Technol; 2012 Jul; 46(13):6950-8. PubMed ID: 22145980 [TBL] [Abstract][Full Text] [Related]
9. A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase. Gårdfeldt K; Munthe J; Strömberg D; Lindqvist O Sci Total Environ; 2003 Mar; 304(1-3):127-36. PubMed ID: 12663177 [TBL] [Abstract][Full Text] [Related]
10. Fate and transport of mercury in environmental media and human exposure. Kim MK; Zoh KD J Prev Med Public Health; 2012 Nov; 45(6):335-43. PubMed ID: 23230463 [TBL] [Abstract][Full Text] [Related]
11. Abiotic methylation of mercury in the aquatic environment. Celo V; Lean DR; Scott SL Sci Total Environ; 2006 Sep; 368(1):126-37. PubMed ID: 16226793 [TBL] [Abstract][Full Text] [Related]
12. Mercury reduction and complexation by natural organic matter in anoxic environments. Gu B; Bian Y; Miller CL; Dong W; Jiang X; Liang L Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1479-83. PubMed ID: 21220311 [TBL] [Abstract][Full Text] [Related]
13. Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Biester H; Müller G; Schöler HF Sci Total Environ; 2002 Feb; 284(1-3):191-203. PubMed ID: 11846164 [TBL] [Abstract][Full Text] [Related]
14. Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury-resistant Acidithiobacillus ferrooxidans SUG 2-2. Takeuchi F; Iwahori K; Kamimura K; Negishi A; Maeda T; Sugio T Biosci Biotechnol Biochem; 2001 Sep; 65(9):1981-6. PubMed ID: 11676009 [TBL] [Abstract][Full Text] [Related]
15. Interactions between mercury and dissolved organic matter--a review. Ravichandran M Chemosphere; 2004 Apr; 55(3):319-31. PubMed ID: 14987930 [TBL] [Abstract][Full Text] [Related]
16. On-line speciation of inorganic and methyl mercury in waters and fish tissues using polyaniline micro-column and flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS). Krishna MV; Chandrasekaran K; Karunasagar D Talanta; 2010 Apr; 81(1-2):462-72. PubMed ID: 20188947 [TBL] [Abstract][Full Text] [Related]
17. Mercury fractionation in contaminated soils from the Idrija mercury mine region. Kocman D; Horvat M; Kotnik J J Environ Monit; 2004 Aug; 6(8):696-703. PubMed ID: 15292953 [TBL] [Abstract][Full Text] [Related]
18. Effects of rice residue incorporation on the speciation, potential bioavailability and risk of mercury in a contaminated paddy soil. Zhu H; Zhong H; Evans D; Hintelmann H J Hazard Mater; 2015 Aug; 293():64-71. PubMed ID: 25827269 [TBL] [Abstract][Full Text] [Related]
19. Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Jonsson S; Skyllberg U; Nilsson MB; Lundberg E; Andersson A; Björn E Nat Commun; 2014 Aug; 5():4624. PubMed ID: 25140406 [TBL] [Abstract][Full Text] [Related]
20. Application of controlled mesocosms for understanding mercury air-soil-plant exchange. Gustin MS; Ericksen JA; Schorran DE; Johnson DW; Lindberg SE; Coleman JS Environ Sci Technol; 2004 Nov; 38(22):6044-50. PubMed ID: 15573605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]