BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15719554)

  • 1. Compartmentalization and transport in beta-lactam antibiotics biosynthesis.
    Evers ME; Trip H; van den Berg MA; Bovenberg RA; Driessen AJ
    Adv Biochem Eng Biotechnol; 2004; 88():111-35. PubMed ID: 15719554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of cephalosporin biosynthesis.
    Schmitt EK; Hoff B; Kück U
    Adv Biochem Eng Biotechnol; 2004; 88():1-43. PubMed ID: 15719551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics.
    Gunnarsson N; Eliasson A; Nielsen J
    Adv Biochem Eng Biotechnol; 2004; 88():137-78. PubMed ID: 15719555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemistry and general genetics of nonribosomal peptide synthetases in fungi.
    von Döhren H
    Adv Biochem Eng Biotechnol; 2004; 88():217-64. PubMed ID: 15719557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system.
    Martín JF; Ullán RV; Casqueiro J
    Adv Biochem Eng Biotechnol; 2004; 88():91-109. PubMed ID: 15719553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of penicillin biosynthesis in filamentous fungi.
    Brakhage AA; Spröte P; Al-Abdallah Q; Gehrke A; Plattner H; Tüncher A
    Adv Biochem Eng Biotechnol; 2004; 88():45-90. PubMed ID: 15719552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs.
    Terfehr D; Dahlmann TA; Kück U
    BMC Genomics; 2017 Mar; 18(1):272. PubMed ID: 28359302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression.
    Ullán RV; Godio RP; Teijeira F; Vaca I; García-Estrada C; Feltrer R; Kosalkova K; Martín JF
    J Microbiol Methods; 2008 Oct; 75(2):209-18. PubMed ID: 18590779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi.
    Van Den Berg M; Gidijala L; Kiela J; Bovenberg R; Vander Keli I
    Biotechnol Genet Eng Rev; 2010; 27():1-32. PubMed ID: 21415891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular regulation of beta-lactam biosynthesis in filamentous fungi.
    Brakhage AA
    Microbiol Mol Biol Rev; 1998 Sep; 62(3):547-85. PubMed ID: 9729600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum.
    Domínguez-Santos R; Martín JF; Kosalková K; Prieto C; Ullán RV; García-Estrada C
    Fungal Genet Biol; 2012 Nov; 49(11):866-81. PubMed ID: 22960281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways.
    Martín JF
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):525-535. PubMed ID: 27565675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation and compartmentalization of β-lactam biosynthesis.
    Martín JF; Ullán RV; García-Estrada C
    Microb Biotechnol; 2010 May; 3(3):285-99. PubMed ID: 21255328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic mutational analysis of the impact of the classical strain improvement program on β-lactam producing Penicillium chrysogenum.
    Salo OV; Ries M; Medema MH; Lankhorst PP; Vreeken RJ; Bovenberg RA; Driessen AJ
    BMC Genomics; 2015 Nov; 16():937. PubMed ID: 26572918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of glucose repression in an Acremonium chrysogenum beta-lactam producer strain and its restoration by multiple copies of the cre1 gene.
    Jekosch K; Kück U
    Appl Microbiol Biotechnol; 2000 Oct; 54(4):556-63. PubMed ID: 11092632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum.
    Nijland JG; Kovalchuk A; van den Berg MA; Bovenberg RA; Driessen AJ
    Fungal Genet Biol; 2008 Oct; 45(10):1415-21. PubMed ID: 18691664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentalization and transport in beta-lactam antibiotic biosynthesis by filamentous fungi.
    van de Kamp M; Driessen AJ; Konings WN
    Antonie Van Leeuwenhoek; 1999; 75(1-2):41-78. PubMed ID: 10422581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum.
    Martín JF; Demain AL
    Trends Biotechnol; 2002 Dec; 20(12):502-7. PubMed ID: 12443871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fungal CPCR1 protein, which binds specifically to beta-lactam biosynthesis genes, is related to human regulatory factor X transcription factors.
    Schmitt EK; Kück U
    J Biol Chem; 2000 Mar; 275(13):9348-57. PubMed ID: 10734077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH-dependent glutamate dehydrogenase in Penicillium chrysogenum is involved in regulation of beta-lactam production.
    Thykaer J; Rueksomtawin K; Noorman H; Nielsen J
    Microbiology (Reading); 2008 Apr; 154(Pt 4):1242-1250. PubMed ID: 18375816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.