BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15719554)

  • 21. Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum.
    Bloemendal S; Löper D; Terfehr D; Kopke K; Kluge J; Teichert I; Kück U
    J Biotechnol; 2014 Jan; 169():51-62. PubMed ID: 24216341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum.
    Weber SS; Kovalchuk A; Bovenberg RA; Driessen AJ
    Fungal Genet Biol; 2012 Nov; 49(11):915-21. PubMed ID: 23010151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum.
    Zhgun A; Dumina M; Valiakhmetov A; Eldarov M
    PLoS One; 2020; 15(8):e0238452. PubMed ID: 32866191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Classical Strain Improvement of
    Wu M; Crismaru CG; Salo O; Bovenberg RAL; Driessen AJM
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31757830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biosynthesis of sulfur-containing beta-lactam antibiotics.
    Nüesch J; Heim J; Treichler HJ
    Annu Rev Microbiol; 1987; 41():51-75. PubMed ID: 3120640
    [No Abstract]   [Full Text] [Related]  

  • 26. Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum.
    Weber SS; Bovenberg RA; Driessen AJ
    Biotechnol J; 2012 Feb; 7(2):225-36. PubMed ID: 22057844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Functional characteristic of the CefT transporter of the MFS family involved in the transportation of beta-lactam antibiotics in Acremonium chrysogenum and Saccharomyces cerevisiae].
    Dumina MV; Zhgun AA; Kerpichnikov IV; Domracheva AG; Novak MI; Valiakhmetov AIa; Knorre DA; Severin FF; Él'darov MA; Bartoshevich IuÉ
    Prikl Biokhim Mikrobiol; 2013; 49(4):372-81. PubMed ID: 24455863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors.
    Brakhage AA; Thön M; Spröte P; Scharf DH; Al-Abdallah Q; Wolke SM; Hortschansky P
    Phytochemistry; 2009; 70(15-16):1801-11. PubMed ID: 19863978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport of substrates into peroxisomes: the paradigm of β-lactam biosynthetic intermediates.
    Martín JF; García-Estrada C; Ullán RV
    Biomol Concepts; 2013 Apr; 4(2):197-211. PubMed ID: 25436576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of beta-lactam biosynthesis genes and recruitment of trans-acting factors.
    Brakhage AA; Al-Abdallah Q; Tüncher A; Spröte P
    Phytochemistry; 2005 Jun; 66(11):1200-10. PubMed ID: 15950251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of beta-lactam antibiotics and its regulation.
    Demain AL
    Proc Natl Sci Counc Repub China B; 1991 Oct; 15(4):251-65. PubMed ID: 1815263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of beta-lactam production.
    Thykaer J; Nielsen J
    Metab Eng; 2003 Jan; 5(1):56-69. PubMed ID: 12749845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Industrial enzymatic production of cephalosporin-based beta-lactams.
    Barber MS; Giesecke U; Reichert A; Minas W
    Adv Biochem Eng Biotechnol; 2004; 88():179-215. PubMed ID: 15719556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The first promoter for conditional gene expression in Acremonium chrysogenum: iron starvation-inducible mir1(P).
    Gsaller F; Blatzer M; Abt B; Schrettl M; Lindner H; Haas H
    J Biotechnol; 2013 Jan; 163(1):77-80. PubMed ID: 23089729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum.
    Kiel JA; van der Klei IJ; van den Berg MA; Bovenberg RA; Veenhuis M
    Fungal Genet Biol; 2005 Feb; 42(2):154-64. PubMed ID: 15670713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum.
    Fernández-Aguado M; Teijeira F; Martín JF; Ullán RV
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):795-808. PubMed ID: 22777282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum.
    Schmitt EK; Hoff B; Kück U
    Gene; 2004 Nov; 342(2):269-81. PubMed ID: 15527986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beta-lactam antibiotic resistance: a current structural perspective.
    Wilke MS; Lovering AL; Strynadka NC
    Curr Opin Microbiol; 2005 Oct; 8(5):525-33. PubMed ID: 16129657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymic analysis of NADPH metabolism in beta-lactam-producing Penicillium chrysogenum: presence of a mitochondrial NADPH dehydrogenase.
    Harris DM; Diderich JA; van der Krogt ZA; Luttik MA; Raamsdonk LM; Bovenberg RA; van Gulik WM; van Dijken JP; Pronk JT
    Metab Eng; 2006 Mar; 8(2):91-101. PubMed ID: 16253533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum.
    Li H; Hu P; Wang Y; Pan Y; Liu G
    Microb Cell Fact; 2018 Nov; 17(1):175. PubMed ID: 30424777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.