These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 15719933)
1. A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control. Xia YS; Feng G; Wang J IEEE Trans Syst Man Cybern B Cybern; 2005 Feb; 35(1):54-64. PubMed ID: 15719933 [TBL] [Abstract][Full Text] [Related]
2. Recurrent neural networks as kinematics estimator and controller for redundant manipulators subject to physical constraints. Tan N; Yu P; Liao S; Sun Z Neural Netw; 2022 Sep; 153():64-75. PubMed ID: 35700560 [TBL] [Abstract][Full Text] [Related]
3. A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits. Zhang Y; Wang J; Xia Y IEEE Trans Neural Netw; 2003; 14(3):658-67. PubMed ID: 18238046 [TBL] [Abstract][Full Text] [Related]
4. Constrained motion control of flexible robot manipulators based on recurrent neural networks. Tian L; Wang J; Mao Z IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1541-52. PubMed ID: 15484923 [TBL] [Abstract][Full Text] [Related]
5. A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. Zhang Y; Ge SS; Lee TH IEEE Trans Syst Man Cybern B Cybern; 2004 Oct; 34(5):2126-32. PubMed ID: 15503508 [TBL] [Abstract][Full Text] [Related]
6. Multicriteria optimization for coordination of redundant robots using a dual neural network. Hou ZG; Cheng L; Tan M IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1075-87. PubMed ID: 19923050 [TBL] [Abstract][Full Text] [Related]
7. Robust GRBF static neurocontroller with switch logic for control of robot manipulators. Mulero-MartÃnez JI IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1053-64. PubMed ID: 24807132 [TBL] [Abstract][Full Text] [Related]
8. A Repeatable Motion Scheme for Kinematic Control of Redundant Manipulators. Ying K; Qingqing T; Ruiyang Z; Lv Y Comput Intell Neurosci; 2019; 2019():5426986. PubMed ID: 31641347 [TBL] [Abstract][Full Text] [Related]
9. A Lagrangian network for kinematic control of redundant robot manipulators. Wang J; Hu Q; Jiang D IEEE Trans Neural Netw; 1999; 10(5):1123-32. PubMed ID: 18252613 [TBL] [Abstract][Full Text] [Related]
10. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. Zhang Y; Ge SS IEEE Trans Neural Netw; 2005 Nov; 16(6):1477-90. PubMed ID: 16342489 [TBL] [Abstract][Full Text] [Related]
11. An inertial neural network approach for loco-manipulation trajectory tracking of mobile robot with redundant manipulator. Xu C; Wang M; Chi G; Liu Q Neural Netw; 2022 Nov; 155():215-223. PubMed ID: 36067552 [TBL] [Abstract][Full Text] [Related]
12. A dual neural network for kinematic control of redundant robot manipulators. Xia Y; Wang J IEEE Trans Syst Man Cybern B Cybern; 2001; 31(1):147-54. PubMed ID: 18244777 [TBL] [Abstract][Full Text] [Related]
13. Two recurrent neural networks for local joint torque optimization of kinematically redundant manipulators. Tang WS; Wang J IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):120-8. PubMed ID: 18244734 [TBL] [Abstract][Full Text] [Related]
14. Obstacle avoidance for kinematically redundant manipulators using a dual neural network. Zhang Y; Wang J IEEE Trans Syst Man Cybern B Cybern; 2004 Feb; 34(1):752-9. PubMed ID: 15369118 [TBL] [Abstract][Full Text] [Related]
15. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems. Han SI; Lee JM ISA Trans; 2014 Jan; 53(1):33-43. PubMed ID: 24055100 [TBL] [Abstract][Full Text] [Related]
16. An Accelerated Finite-Time Convergent Neural Network for Visual Servoing of a Flexible Surgical Endoscope With Physical and RCM Constraints. Li W; Chiu PWY; Li Z IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5272-5284. PubMed ID: 32011270 [TBL] [Abstract][Full Text] [Related]
17. Model-free motion control of continuum robots based on a zeroing neurodynamic approach. Tan N; Yu P; Zhang X; Wang T Neural Netw; 2021 Jan; 133():21-31. PubMed ID: 33099245 [TBL] [Abstract][Full Text] [Related]
18. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics. Wai RJ; Yang ZW IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015 [TBL] [Abstract][Full Text] [Related]
19. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. Yoo SJ; Park JB; Choi YH IEEE Trans Neural Netw; 2008 Oct; 19(10):1712-26. PubMed ID: 18842476 [TBL] [Abstract][Full Text] [Related]
20. Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots. Zhang Z; Li Z; Zhang Y; Luo Y; Li Y IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3251-62. PubMed ID: 26340789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]