BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15719974)

  • 1. SURLAS: a new clinical grade ultrasound system for sequential or concomitant thermoradiotherapy of superficial tumors: applicator description.
    Novák P; Moros EG; Straube WL; Myerson RJ
    Med Phys; 2005 Jan; 32(1):230-40. PubMed ID: 15719974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy.
    Novák P; Moros EG; Straube WL; Myerson RJ
    Med Phys; 2005 Nov; 32(11):3246-56. PubMed ID: 16372408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the SURLAS applicator on radiation dose distributions during simultaneous thermoradiotherapy with helical tomotherapy.
    Novák P; Peñagarícano JA; Nahirnyak V; Corry P; Moros EG
    Phys Med Biol; 2008 May; 53(10):2509-22. PubMed ID: 18424880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental assessment of power and temperature penetration depth control with a dual frequency ultrasonic system.
    Moros EG; Fan X; Straube WL
    Med Phys; 1999 May; 26(5):810-7. PubMed ID: 10360546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Present and future technology for simultaneous superficial thermoradiotherapy of breast cancer.
    Moros EG; Peñagaricano J; Novàk P; Straube WL; Myerson RJ
    Int J Hyperthermia; 2010; 26(7):699-709. PubMed ID: 20849263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential for power deposition conformability using reflected-scanned planar ultrasound.
    Moros EG; Straube WL; Myerson RJ
    Int J Hyperthermia; 1996; 12(6):723-36. PubMed ID: 8950153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of concurrent treatment with the scanning ultrasound reflector linear array system (SURLAS) and the helical tomotherapy system.
    Peñagarícano JA; Moros E; Novák P; Yan Y; Corry P
    Int J Hyperthermia; 2008 Aug; 24(5):377-88. PubMed ID: 18608592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrasound system for simultaneous ultrasound hyperthermia and photon beam irradiation.
    Straube WL; Moros EG; Low DA; Klein EE; Willcut VM; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1996 Dec; 36(5):1189-200. PubMed ID: 8985042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetry and techniques for simultaneous hyperthermia and external beam radiation therapy.
    Straube WL; Klein EE; Moros EG; Low DA; Myerson RJ
    Int J Hyperthermia; 2001; 17(1):48-62. PubMed ID: 11212880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Recent progress of thermoradiotherapy in cancer therapy].
    Hiraoka M; Nishimura Y; Nagata Y; Mitsumori M; Okuno Y
    Gan To Kagaku Ryoho; 1995 Sep; 22(10):1335-41. PubMed ID: 7668867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of penetration depth control using parallel opposed ultrasound arrays and a scanning reflector.
    Moros EG; Fan X; Straube WL
    J Acoust Soc Am; 1997 Mar; 101(3):1734-41. PubMed ID: 9069639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterization of an intracavitary ultrasound hyperthermia applicator for recurrent or residual lesions in the vaginal cuff.
    Lee RJ; Suh H
    Int J Hyperthermia; 2003; 19(5):563-74. PubMed ID: 12944170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia.
    Zubair M; Adams MS; Diederich CJ
    Int J Hyperthermia; 2021 Aug; 38(1):1188-1204. PubMed ID: 34376103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical and in vitro evaluation of temperature fluctuations during reflected-scanned planar ultrasound hyperthermia.
    Moros EG; Fan X; Straube WL; Myerson RJ
    Int J Hyperthermia; 1998; 14(4):367-82. PubMed ID: 9690149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation dosimetry of a conformal heat-brachytherapy applicator.
    Taschereau R; Stauffer PR; Hsu IC; Schlorff JL; Milligan AJ; Pouliot J
    Technol Cancer Res Treat; 2004 Aug; 3(4):347-58. PubMed ID: 15270585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic power calibrations of cylindrical intracavitary ultrasound hyperthermia applicators.
    Hynynen K
    Med Phys; 1993; 20(1):129-34. PubMed ID: 8455491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.