These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15720005)

  • 1. Behavioral responses to sublethal cadmium exposure within an experimental aquatic food web.
    Riddell DJ; Culp JM; Baird DJ
    Environ Toxicol Chem; 2005 Feb; 24(2):431-41. PubMed ID: 15720005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sublethal effects of cadmium on prey choice and capture efficiency in juvenile brook trout (Salvelinus fontinalis).
    Riddell DJ; Culp JM; Baird DJ
    Environ Toxicol Chem; 2005 Jul; 24(7):1751-8. PubMed ID: 16050593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicological responses of the mayfly Baetis tricaudatus to dietary and waterborne cadmium: implications for toxicity testing.
    Irving EC; Baird DJ; Culp JM
    Environ Toxicol Chem; 2003 May; 22(5):1058-64. PubMed ID: 12729215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitness and community consequences of avoiding multiple predators.
    Peckarsky BL; McIntosh AR
    Oecologia; 1998 Feb; 113(4):565-576. PubMed ID: 28308037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effects of predatory fish and sublethal pesticide contamination on the behavior and mortality of mayfly nymphs.
    Schulz R; Dabrowski JM
    Environ Toxicol Chem; 2001 Nov; 20(11):2537-43. PubMed ID: 11699780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sedimentary cadmium on the behavior of a burrowing mayfly (Ephemeroptera, Hexagenia limbata).
    Gosselin A; Hare L
    Environ Toxicol Chem; 2004 Feb; 23(2):383-7. PubMed ID: 14982385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of arsenic speciation and low dissolved oxygen condition on the toxicity of arsenic to a lotic mayfly.
    Irving EC; Lowell RB; Culp JM; Liber K; Xie Q; Kerrich R
    Environ Toxicol Chem; 2008 Mar; 27(3):583-90. PubMed ID: 17944546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado.
    Besser JM; Brumbaugh WG; May TW; Church SE; Kimball BA
    Arch Environ Contam Toxicol; 2001 Jan; 40(1):48-59. PubMed ID: 11116340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dissolved carbon dioxide on the physiology and behavior of fish in artificial streams.
    Ross RM; Krise WF; Redell LA; Bennett RM
    Environ Toxicol; 2001; 16(1):84-95. PubMed ID: 11345549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid size-specific changes in the drift of Baetis bicaudatus (Ephemeroptera) caused by alterations in fish odour concentration.
    McIntosh AR; Peckarsky BL; Taylor BW
    Oecologia; 1999 Feb; 118(2):256-264. PubMed ID: 28307702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates.
    Mebane CA; Dillon FS; Hennessy DP
    Environ Toxicol Chem; 2012 Jun; 31(6):1334-48. PubMed ID: 22488500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stonefly nymphs use hydrodynamic cues to discriminate between prey.
    Peckarsky BL; Wilcox RS
    Oecologia; 1989 May; 79(2):265-270. PubMed ID: 28312864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of predation risk under the cover of darkness: Avoidance responses of mayfly larvae to a benthic fish.
    Culp JM; Glozier NE; Scrimgeour GJ
    Oecologia; 1991 Apr; 86(2):163-169. PubMed ID: 28313197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sublethal effects and predator-prey interactions: implications for ecological risk assessment.
    Brooks AC; Gaskell PN; Maltby LL
    Environ Toxicol Chem; 2009 Nov; 28(11):2449-57. PubMed ID: 19572771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of insecticide exposure on feeding inhibition in mayflies and oligochaetes.
    Alexander AC; Culp JM; Liber K; Cessna AJ
    Environ Toxicol Chem; 2007 Aug; 26(8):1726-32. PubMed ID: 17702348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of long-term cadmium exposure on the growth and survival of juvenile bull trout (Salvelinus confluentus).
    Hansen JA; Welsh PG; Lipton J; Suedkamp MJ
    Aquat Toxicol; 2002 Aug; 58(3-4):165-74. PubMed ID: 12007872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of trout in stream food webs: integrating evidence from field surveys and experiments.
    Meissner K; Muotka T
    J Anim Ecol; 2006 Mar; 75(2):421-33. PubMed ID: 16637995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.
    Klecka J; Boukal DS
    J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Larval aquatic insect responses to cadmium and zinc in experimental streams.
    Mebane CA; Schmidt TS; Balistrieri LS
    Environ Toxicol Chem; 2017 Mar; 36(3):749-762. PubMed ID: 27541712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.
    Brinkman SF; Johnston WD
    Arch Environ Contam Toxicol; 2012 Feb; 62(2):272-81. PubMed ID: 21811884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.