BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15720131)

  • 1. Reactions of benzene oxide with thiols including glutathione.
    Henderson AP; Barnes ML; Bleasdale C; Cameron R; Clegg W; Heath SL; Lindstrom AB; Rappaport SM; Waidyanatha S; Watson WP; Golding BT
    Chem Res Toxicol; 2005 Feb; 18(2):265-70. PubMed ID: 15720131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for the formation of Michael adducts from reactions of (E,E)-muconaldehyde with glutathione and other thiols.
    Henderson AP; Bleasdale C; Delaney K; Lindstrom AB; Rappaport SM; Waidyanatha S; Watson WP; Golding BT
    Bioorg Chem; 2005 Oct; 33(5):363-73. PubMed ID: 16005934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimethyldioxirane converts benzene oxide/oxepin into (Z,Z)-muconaldehyde and sym-oxepin oxide: modeling the metabolism of benzene and its photooxidative degradation.
    Bleasdale C; Cameron R; Edwards C; Golding BT
    Chem Res Toxicol; 1997 Dec; 10(12):1314-8. PubMed ID: 9437519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationships in the mutagenicity and cytotoxicity of putative metabolites and related analogs of benzene derived from the valence tautomers benzene oxide and oxepin.
    Stark AA; Rastetter WH
    Environ Mol Mutagen; 1996; 28(3):284-93. PubMed ID: 8908188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of benzene oxide, a reactive metabolite of benzene, with model nucleophiles and DNA.
    Míčová K; Linhart I
    Xenobiotica; 2012 Oct; 42(10):1028-37. PubMed ID: 22448774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-Transnitrosation reactions are involved in the metabolic fate and biological actions of nitric oxide.
    Liu Z; Rudd MA; Freedman JE; Loscalzo J
    J Pharmacol Exp Ther; 1998 Feb; 284(2):526-34. PubMed ID: 9454793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of S-phenylmercapturic acid as a biomarker in molecular epidemiology studies of benzene.
    Farmer PB; Kaur B; Roach J; Levy L; Consonni D; Bertazzi PA; Pesatori A; Fustinoni S; Buratti M; Bonzini M; Colombi A; Popov T; Cavallo D; Desideri A; Valerio F; Pala M; Bolognesi C; Merlo F
    Chem Biol Interact; 2005 May; 153-154():97-102. PubMed ID: 15935804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the formation and reactions of benzene metabolites.
    Golding BT; Barnes ML; Bleasdale C; Henderson AP; Jiang D; Li X; Mutlu E; Petty HJ; Sadeghi MM
    Chem Biol Interact; 2010 Mar; 184(1-2):196-200. PubMed ID: 20064493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of 4-S-Cysteinyltetrodotoxin from the liver of the puffer fish, Fugu pardalis, and formation of thiol adducts of tetrodotoxin from 4,9-anhydrotetrodotoxin.
    Yotsu-Yamashita M; Goto A; Nakagawa T
    Chem Res Toxicol; 2005 May; 18(5):865-71. PubMed ID: 15892580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzene oxide is a substrate for glutathione S-transferases.
    Zarth AT; Murphy SE; Hecht SS
    Chem Biol Interact; 2015 Dec; 242():390-5. PubMed ID: 26554337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione.
    Nagy P; Jameson GN; Winterbourn CC
    Chem Res Toxicol; 2009 Nov; 22(11):1833-40. PubMed ID: 19821602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of urinary S-phenylmercapturic acid, a specific metabolite of benzene, by liquid chromatography/single quadrupole mass spectrometry.
    Maestri L; Negri S; Ferrari M; Ghittori S; Imbriani M
    Rapid Commun Mass Spectrom; 2005; 19(9):1139-44. PubMed ID: 15799071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic and nonenzymatic synthesis of glutathione conjugates: application to the understanding of a parasite's defense system and alternative to the discovery of potent glutathione S-transferase inhibitors.
    Lo WJ; Chiou YC; Hsu YT; Lam WS; Chang MY; Jao SC; Li WS
    Bioconjug Chem; 2007; 18(1):109-20. PubMed ID: 17226963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pH, temperature, and chemical structure on the stability of S-(purin-6-yl)-L-cysteine: evidence for a novel molecular rearrangement mechanism to yield N-(purin-6-yl)-L-cysteine.
    Elfarra AA; Hwang IY
    Chem Res Toxicol; 1996; 9(3):654-8. PubMed ID: 8728512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of S-[2-carboxy-1-(1H-imidazol-4-yl) ethyl]glutathione, a new metabolite of L-histidine, from cis-urocanic acid and glutathione by the action of glutathione S-transferase.
    Kinuta M; Kinuta K; Yamada H; Abe T; Yoshida Y; Araki K; Li SA; Otsuka A; Nakanishi A; Moriyama Y; Takei K
    Electrophoresis; 2003 Sep; 24(18):3212-8. PubMed ID: 14518047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the reaction between nitroxide and thiyl radicals: nitroxides as antioxidants in the presence of thiols.
    Goldstein S; Samuni A; Merenyi G
    J Phys Chem A; 2008 Sep; 112(37):8600-5. PubMed ID: 18729428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein and nonprotein cysteinyl thiol modification by N-acetyl-p-benzoquinone imine via a novel ipso adduct.
    Chen W; Shockcor JP; Tonge R; Hunter A; Gartner C; Nelson SD
    Biochemistry; 1999 Jun; 38(25):8159-66. PubMed ID: 10387061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes.
    Rubino FM; Pitton M; Brambilla G; Colombi A
    J Mass Spectrom; 2006 Dec; 41(12):1578-93. PubMed ID: 17136764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synthesis of water soluble decalin-based thiols and S-nitrosothiols--model systems for studying the reactions of nitric oxide with protein thiols.
    Spivey AC; Colley J; Sprigens L; Hancock SM; Cameron DS; Chigboh KI; Veitch G; Frampton CS; Adams H
    Org Biomol Chem; 2005 May; 3(10):1942-52. PubMed ID: 15889178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between GST genetic polymorphism and dose-related production of urinary benzene metabolite markers, trans, trans-muconic acid and S-phenylmercapturic acid.
    Lin LC; Chen WJ; Chiung YM; Shih TS; Liao PC
    Cancer Epidemiol Biomarkers Prev; 2008 Jun; 17(6):1460-9. PubMed ID: 18559562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.