These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15720146)

  • 1. Quinone methide formations in the Cu(2+)-induced oxidation of a diterpenone catechol and concurrent damage on DNA.
    Zhou Q; Zuniga MA
    Chem Res Toxicol; 2005 Feb; 18(2):382-8. PubMed ID: 15720146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA oxidative damage by terpene catechols as analogues of natural terpene quinone methide precursors in the presence of Cu(II) and/or NADH.
    Zuniga MA; Dai J; Wehunt MP; Zhou Q
    Chem Res Toxicol; 2006 Jun; 19(6):828-36. PubMed ID: 16780362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells.
    Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM
    Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p-Quinone methides are the major decomposition products of catechol estrogen o-quinones.
    Bolton JL; Shen L
    Carcinogenesis; 1996 May; 17(5):925-9. PubMed ID: 8640939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes.
    Iverson SL; Shen L; Anlar N; Bolton JL
    Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dopaquinone model that mimics the water addition step of cofactor biogenesis in copper amine oxidases.
    Ling KQ; Sayre LM
    J Am Chem Soc; 2005 Apr; 127(13):4777-84. PubMed ID: 15796543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of the p-alkyl substituent on the isomerization of o-quinones to p-quinone methides: potential bioactivation mechanism for catechols.
    Iverson SL; Hu LQ; Vukomanovic V; Bolton JL
    Chem Res Toxicol; 1995 Jun; 8(4):537-44. PubMed ID: 7548733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of DNA adducts by microsomal and peroxidase activation of p-cresol: role of quinone methide in DNA adduct formation.
    Gaikwad NW; Bodell WJ
    Chem Biol Interact; 2001 Dec; 138(3):217-29. PubMed ID: 11714480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonyl side-chain of catechol compounds is a key structure for the suppression of copper-associated oxidative DNA damage in vitro.
    Ando M; Nishida H; Nishino Y; Ohbayashi M; Ueda K; Okamoto Y; Kojima N
    Toxicol Lett; 2010 Dec; 199(3):213-7. PubMed ID: 20832456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: studies utilizing amino acid and peptide models.
    Bolton JL; Turnipseed SB; Thompson JA
    Chem Biol Interact; 1997 Nov; 107(3):185-200. PubMed ID: 9448752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation.
    Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol.
    Bolton JL; Comeau E; Vukomanovic V
    Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol.
    Lewis MA; Yoerg DG; Bolton JL; Thompson JA
    Chem Res Toxicol; 1996 Dec; 9(8):1368-74. PubMed ID: 8951242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative quenching of quinone methide adducts reveals transient products of reversible alkylation in duplex DNA.
    McCrane MP; Hutchinson MA; Ad O; Rokita SE
    Chem Res Toxicol; 2014 Jul; 27(7):1282-93. PubMed ID: 24896651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of free radicals produced during oxidation of etoposide (VP-16) and its catechol and quinone derivatives. An ESR Study.
    Kalyanaraman B; Nemec J; Sinha BK
    Biochemistry; 1989 May; 28(11):4839-46. PubMed ID: 2548593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ESR identification of free radicals formed from the oxidation of catechol estrogens by Cu2+.
    Seacat AM; Kuppusamy P; Zweier JL; Yager JD
    Arch Biochem Biophys; 1997 Nov; 347(1):45-52. PubMed ID: 9344463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiestrogenic and DNA damaging effects induced by tamoxifen and toremifene metabolites.
    Liu X; Pisha E; Tonetti DA; Yao D; Li Y; Yao J; Burdette JE; Bolton JL
    Chem Res Toxicol; 2003 Jul; 16(7):832-7. PubMed ID: 12870885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of butylated hydroxytoluene to toxic metabolites. Factors influencing hydroxylation and quinone methide formation by hepatic and pulmonary microsomes.
    Bolton JL; Thompson JA
    Drug Metab Dispos; 1991; 19(2):467-72. PubMed ID: 1676656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective N1-alkylation of 2'-deoxyguanosine with a quinolinyl quinone methide.
    Zhou Q; Xu T; Mangrum JB
    Chem Res Toxicol; 2007 Aug; 20(8):1069-74. PubMed ID: 17630703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.