These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15720700)

  • 21. Sensitivity of different Lupinus species to calcium under a low phosphorus supply.
    Ding W; Clode PL; Clements JC; Lambers H
    Plant Cell Environ; 2018 Jul; 41(7):1512-1523. PubMed ID: 29476534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mycorrhiza in sedges--an overview.
    Muthukumar T; Udaiyan K; Shanmughavel P
    Mycorrhiza; 2004 Apr; 14(2):65-77. PubMed ID: 14999550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does cluster-root activity benefit nutrient uptake and growth of co-existing species?
    Muler AL; Oliveira RS; Lambers H; Veneklaas EJ
    Oecologia; 2014 Jan; 174(1):23-31. PubMed ID: 23934064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus toxicity, not deficiency, explains the calcifuge habit of phosphorus-efficient Proteaceae.
    Guilherme Pereira C; Hayes PE; Clode PL; Lambers H
    Physiol Plant; 2021 Jul; 172(3):1724-1738. PubMed ID: 33665808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ammonium tolerance and toxicity of Actinoscirpus grossus--a candidate species for use in tropical constructed wetland systems.
    Piwpuan N; Jampeetong A; Brix H
    Ecotoxicol Environ Saf; 2014 Sep; 107():319-28. PubMed ID: 25038560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cluster root-bearing Proteaceae species show a competitive advantage over non-cluster root-bearing species.
    Fajardo A; Piper FI
    Ann Bot; 2019 Nov; 124(6):1121-1131. PubMed ID: 31332426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species.
    Abdolzadeh A; Wang X; Veneklaas EJ; Lambers H
    Ann Bot; 2010 Mar; 105(3):365-74. PubMed ID: 20037142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) take up glycine intact: an adaptive strategy to low mineral nitrogen in soils?
    Hawkins HJ; Wolf G; Stock WD
    Ann Bot; 2005 Dec; 96(7):1275-82. PubMed ID: 16223736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of roots in adaptation of soil-indifferent Proteaceae to calcareous soils in south-western Australia.
    Kotula L; Clode PL; Ranathunge K; Lambers H
    J Exp Bot; 2021 Feb; 72(4):1490-1505. PubMed ID: 33170269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium-enhanced phosphorus toxicity in calcifuge and soil-indifferent Proteaceae along the Jurien Bay chronosequence.
    Hayes PE; Guilherme Pereira C; Clode PL; Lambers H
    New Phytol; 2019 Jan; 221(2):764-777. PubMed ID: 30267566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply.
    Pang J; Bansal R; Zhao H; Bohuon E; Lambers H; Ryan MH; Ranathunge K; Siddique KHM
    New Phytol; 2018 Jul; 219(2):518-529. PubMed ID: 29756639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nutritional regulation of root development.
    Ruiz Herrera LF; Shane MW; López-Bucio J
    Wiley Interdiscip Rev Dev Biol; 2015; 4(4):431-43. PubMed ID: 25760021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in the fine root proteome of Fagus sylvatica L. trees associated with P-deficiency and amelioration of P-deficiency.
    Geilfus CM; Carpentier SC; Zavišić A; Polle A
    J Proteomics; 2017 Oct; 169():33-40. PubMed ID: 28625739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress.
    Uhde-Stone C; Liu J; Zinn KE; Allan DL; Vance CP
    Plant J; 2005 Dec; 44(5):840-53. PubMed ID: 16297074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration.
    Wasaki J; Rothe A; Kania A; Neumann G; Römheld V; Shinano T; Osaki M; Kandeler E
    J Environ Qual; 2005; 34(6):2157-66. PubMed ID: 16275716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nonmycorrhizal root--a strategy for survival in nutrient-impoverished soils.
    Miller RM
    New Phytol; 2005 Mar; 165(3):655-8. PubMed ID: 15720676
    [No Abstract]   [Full Text] [Related]  

  • 37. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.
    Bakker MR; Jolicoeur E; Trichet P; Augusto L; Plassard C; Guinberteau J; Loustau D
    Tree Physiol; 2009 Feb; 29(2):229-38. PubMed ID: 19203948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorus Stress-Induced Proteoid Roots Show Altered Metabolism in Lupinus albus.
    Johnson JF; Allan DL; Vance CP
    Plant Physiol; 1994 Feb; 104(2):657-665. PubMed ID: 12232116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil.
    Zhang J; George E
    Tree Physiol; 2009 Feb; 29(2):199-206. PubMed ID: 19203945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Phosphorus transfer between mixed poplar and black locust seedlings].
    He W; Jia L; Hao B; Wen X; Zhai M
    Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):481-6. PubMed ID: 12920885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.