BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15721160)

  • 1. Surface chemistry of enamel apatite during maturation in relation to pH: implications for protein removal and crystal growth.
    Robinson C; Connell S; Brookes SJ; Kirkham J; Shore RC; Smith DA
    Arch Oral Biol; 2005 Feb; 50(2):267-70. PubMed ID: 15721160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of fluoride on the nanostructure and surface pK of enamel crystals: an atomic force microscopy study of human and rat enamel.
    Robinson C; Yamamoto K; Connell SD; Kirkham J; Nakagaki H; Smith AD
    Eur J Oral Sci; 2006 May; 114 Suppl 1():99-104; discussion 127-9, 380. PubMed ID: 16674669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix.
    Iijima M; Moradian-Oldak J
    Biomaterials; 2005 May; 26(13):1595-603. PubMed ID: 15522761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit structures in hydroxyapatite crystal development in enamel: implications for amelogenesis imperfecta.
    Robinson C; Shore RC; Wood SR; Brookes SJ; Smith DA; Wright JT; Connell S; Kirkham J
    Connect Tissue Res; 2003; 44 Suppl 1():65-71. PubMed ID: 12952176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amelogenin control over apatite crystal growth is affected by the pH and degree of ionic saturation.
    Habelitz S; Denbesten PK; Marshall SJ; Marshall GW; Li W
    Orthod Craniofac Res; 2005 Nov; 8(4):232-8. PubMed ID: 16238603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of dentin noncollagenous matrix proteins to biological mineral crystals: an atomic force microscopy study.
    Wallwork ML; Kirkham J; Chen H; Chang SX; Robinson C; Smith DA; Clarkson BH
    Calcif Tissue Int; 2002 Sep; 71(3):249-55. PubMed ID: 12154396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface structure study of biological calcium phosphate apatite crystals from human tooth enamel.
    Brès EF; Hutchison JL
    J Biomed Mater Res; 2002; 63(4):433-40. PubMed ID: 12115752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for charge domains on developing enamel crystal surfaces.
    Kirkham J; Zhang J; Brookes SJ; Shore RC; Wood SR; Smith DA; Wallwork ML; Ryu OH; Robinson C
    J Dent Res; 2000 Dec; 79(12):1943-7. PubMed ID: 11201043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal growth in dental enamel: the role of amelogenins and albumin.
    Robinson C; Brookes SJ; Kirkham J; Bonass WA; Shore RC
    Adv Dent Res; 1996 Nov; 10(2):173-9; discussion 179-80. PubMed ID: 9206334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride.
    Iijima M; Du C; Abbott C; Doi Y; Moradian-Oldak J
    Eur J Oral Sci; 2006 May; 114 Suppl 1():304-7; discussion 327-9, 382. PubMed ID: 16674703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of dental enamel afflicted with hypoplasia: an atomic force microscopic study.
    Batina N; Renugopalakrishnan V; Casillas Lavín PN; Guerrero JC; Morales M; Garduño-Juárez R; Lakka SL
    Calcif Tissue Int; 2004 Mar; 74(3):294-301. PubMed ID: 14583837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle-Attachment-Mediated and Matrix/Lattice-Guided Enamel Apatite Crystal Growth.
    Jokisaari JR; Wang C; Qiao Q; Hu X; Reed DA; Bleher R; Luan X; Klie RF; Diekwisch TGH
    ACS Nano; 2019 Mar; 13(3):3151-3161. PubMed ID: 30763075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic light scattering study of an amelogenin gel-like matrix in vitro.
    Petta V; Moradian-Oldak J; Yannopoulos SN; Bouropoulos N
    Eur J Oral Sci; 2006 May; 114 Suppl 1():308-14; discussion 327-9, 382. PubMed ID: 16674704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, crystal chemistry and density of enamel apatites.
    Elliott JC
    Ciba Found Symp; 1997; 205():54-67; discussion 67-72. PubMed ID: 9189617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro albumin binding on apatite crystals from developing enamel.
    Menanteau J; Gregoire M; Daculsi G; Jans I
    Bone Miner; 1987 Nov; 3(2):137-41. PubMed ID: 3505196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of fluoride on the developing tooth.
    Robinson C; Connell S; Kirkham J; Brookes SJ; Shore RC; Smith AM
    Caries Res; 2004; 38(3):268-76. PubMed ID: 15153700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some ultrastructural aspects of biological apatite dissolution and possible role of dislocations.
    Daculsi G; Kerebel B
    J Biol Buccale; 1977 Sep; 5(3):203-18. PubMed ID: 122695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: implications to extracellular acid loading as apatite crystals mature.
    Smith CE; Chong DL; Bartlett JD; Margolis HC
    J Bone Miner Res; 2005 Feb; 20(2):240-9. PubMed ID: 15647818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluctuations in surface pH of maturing rat incisor enamel are a result of cycles of H(+)-secretion by ameloblasts and variations in enamel buffer characteristics.
    Damkier HH; Josephsen K; Takano Y; Zahn D; Fejerskov O; Frische S
    Bone; 2014 Mar; 60():227-34. PubMed ID: 24373736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of amelogenin with hydroxyapatite crystals: an adherence effect through amelogenin molecular self-association.
    Moradian-Oldak J; Tan J; Fincham AG
    Biopolymers; 1998 Oct; 46(4):225-38. PubMed ID: 9715666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.