BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15721233)

  • 1. The ins and outs of intracellular chloride in olfactory receptor neurons.
    Restrepo D
    Neuron; 2005 Feb; 45(4):481-2. PubMed ID: 15721233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross talk between the GABA(A) receptor and the Na-K-Cl cotransporter is mediated by intracellular Cl-.
    Schomberg SL; Bauer J; Kintner DB; Su G; Flemmer A; Forbush B; Sun D
    J Neurophysiol; 2003 Jan; 89(1):159-67. PubMed ID: 12522168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons.
    Reisert J; Lai J; Yau KW; Bradley J
    Neuron; 2005 Feb; 45(4):553-61. PubMed ID: 15721241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NKCC1 activity modulates formation of functional inhibitory synapses in cultured neocortical neurons.
    Nakanishi K; Yamada J; Takayama C; Oohira A; Fukuda A
    Synapse; 2007 Mar; 61(3):138-49. PubMed ID: 17146765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium.
    Nickell WT; Kleene NK; Kleene SJ
    J Physiol; 2007 Sep; 583(Pt 3):1005-20. PubMed ID: 17656441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses.
    Schöbel N; Radtke D; Lübbert M; Gisselmann G; Lehmann R; Cichy A; Schreiner BS; Altmüller J; Spector AC; Spehr J; Hatt H; Wetzel CH
    PLoS One; 2012; 7(11):e48005. PubMed ID: 23144843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABA-mediated trophic effect on oligodendrocytes requires Na-K-2Cl cotransport activity.
    Wang H; Yan Y; Kintner DB; Lytle C; Sun D
    J Neurophysiol; 2003 Aug; 90(2):1257-65. PubMed ID: 12904508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Both NKCC1 and anion exchangers contribute to Cl⁻ accumulation in postnatal forebrain neuronal progenitors.
    Sun L; Yu Z; Wang W; Liu X
    Eur J Neurosci; 2012 Mar; 35(5):661-72. PubMed ID: 22390178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term expressional changes of Na+ -K+ -Cl- co-transporter 1 (NKCC1) and K+ -Cl- co-transporter 2 (KCC2) in CA1 region of hippocampus following lithium-pilocarpine induced status epilepticus (PISE).
    Li X; Zhou J; Chen Z; Chen S; Zhu F; Zhou L
    Brain Res; 2008 Jul; 1221():141-6. PubMed ID: 18550034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anoctamin 2/TMEM16B: a calcium-activated chloride channel in olfactory transduction.
    Pifferi S; Cenedese V; Menini A
    Exp Physiol; 2012 Feb; 97(2):193-9. PubMed ID: 21890523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1.
    Hartmann AM; Blaesse P; Kranz T; Wenz M; Schindler J; Kaila K; Friauf E; Nothwang HG
    J Neurochem; 2009 Oct; 111(2):321-31. PubMed ID: 19686239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of chloride uptake in frog olfactory receptor neurons.
    Jaén C; Ozdener MH; Reisert J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Apr; 197(4):339-49. PubMed ID: 21253748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mice lacking NKCC1 have normal olfactory sensitivity.
    Smith DW; Thach S; Marshall EL; Mendoza MG; Kleene SJ
    Physiol Behav; 2008 Jan; 93(1-2):44-9. PubMed ID: 17719611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NKCC1 does not accumulate chloride in developing retinal neurons.
    Zhang LL; Delpire E; Vardi N
    J Neurophysiol; 2007 Jul; 98(1):266-77. PubMed ID: 17493914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Na(+)-K(+)-2Cl(-) cotransporters in hypertonicity-induced rise in intracellular calcium concentration.
    Hattori T; Wang PL
    Int J Neurosci; 2006 Dec; 116(12):1501-7. PubMed ID: 17145684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloride accumulation in mammalian olfactory sensory neurons.
    Kaneko H; Putzier I; Frings S; Kaupp UB; Gensch T
    J Neurosci; 2004 Sep; 24(36):7931-8. PubMed ID: 15356206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression patterns of chloride transporters, Na+-K+-2Cl--cotransporter and K+-Cl--cotransporter, in epilepsy-associated malformations of cortical development.
    Aronica E; Boer K; Redeker S; Spliet WG; van Rijen PC; Troost D; Gorter JA
    Neuroscience; 2007 Mar; 145(1):185-96. PubMed ID: 17207578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of the cation-chloride cotransporters in neurological disease.
    Kahle KT; Staley KJ; Nahed BV; Gamba G; Hebert SC; Lifton RP; Mount DB
    Nat Clin Pract Neurol; 2008 Sep; 4(9):490-503. PubMed ID: 18769373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in the chloride cotransporters, NKCC1 and KCC2, in the developing hypothalamus.
    Perrot-Sinal TS; Sinal CJ; Reader JC; Speert DB; McCarthy MM
    J Neuroendocrinol; 2007 Apr; 19(4):302-8. PubMed ID: 17355320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of chloride transport in the control of the membrane potential in skeletal muscle--theory and experiment.
    Gallaher J; Bier M; Siegenbeek van Heukelom J
    Biophys Chem; 2009 Jul; 143(1-2):18-25. PubMed ID: 19361905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.