These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15721533)

  • 1. Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes.
    Kim WS; Kim SO; Kim KW
    J Hazard Mater; 2005 Feb; 118(1-3):93-102. PubMed ID: 15721533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zeta potential of soils with surfactants and its relevance to electrokinetic remediation.
    Kaya A; Yukselen Y
    J Hazard Mater; 2005 Apr; 120(1-3):119-26. PubMed ID: 15811672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead (II) removal from natural soils by enhanced electrokinetic remediation.
    Altin A; Degirmenci M
    Sci Total Environ; 2005 Jan; 337(1-3):1-10. PubMed ID: 15626374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology.
    Wang JY; Huang XJ; Kao JC; Stabnikova O
    J Hazard Mater; 2006 Aug; 136(3):532-41. PubMed ID: 16504386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method.
    Ouhadi VR; Yong RN; Shariatmadari N; Saeidijam S; Goodarzi AR; Safari-Zanjani M
    J Hazard Mater; 2010 Jan; 173(1-3):87-94. PubMed ID: 19733966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemical reconnaissance of heavy metals in kaolin after electrokinetic remediation.
    Al-Hamdan AZ; Reddy KR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(1):17-33. PubMed ID: 16401568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic enhancement removal of heavy metals from industrial wastewater sludge.
    Yuan C; Weng CH
    Chemosphere; 2006 Sep; 65(1):88-96. PubMed ID: 16643980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of critical operational parameters on the circulation-enhanced electrokinetics.
    Chang JH; Liao YC
    J Hazard Mater; 2006 Feb; 129(1-3):186-93. PubMed ID: 16188380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotic flow behaviour of metal contaminated expansive soil.
    Sivapullaiah PV; Prakash BS
    J Hazard Mater; 2007 May; 143(3):682-9. PubMed ID: 17276001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant.
    Yeon KH; Song JH; Moon SH
    Water Res; 2004 Apr; 38(7):1911-21. PubMed ID: 15026246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil.
    Ottosen LM; Lepkova K; Kubal M
    J Hazard Mater; 2006 Sep; 137(1):113-20. PubMed ID: 16533561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process.
    Wang JY; Huang XJ; Kao JC; Stabnikova O
    J Hazard Mater; 2007 Jun; 144(1-2):292-9. PubMed ID: 17110023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes.
    Shen Z; Chen X; Jia J; Qu L; Wang W
    Environ Pollut; 2007 Nov; 150(2):193-9. PubMed ID: 17376568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique.
    Pazos M; Sanromán MA; Cameselle C
    Chemosphere; 2006 Feb; 62(5):817-22. PubMed ID: 15970309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The investigation on cationic exchange capacity of zeolites: the use as selective ion trappers in the electrokinetic soil technique.
    Ursini O; Lilla E; Montanari R
    J Hazard Mater; 2006 Sep; 137(2):1079-88. PubMed ID: 16716501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation.
    Roach N; Reddy KR; Al-Hamdan AZ
    J Hazard Mater; 2009 Jun; 165(1-3):548-57. PubMed ID: 19013716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil.
    Kim SH; Han HY; Lee YJ; Kim CW; Yang JW
    Sci Total Environ; 2010 Jul; 408(16):3162-8. PubMed ID: 20452646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing effect of electrode configuration on the efficiency of electrokinetic remediation by sequential extraction analysis.
    Turer D; Genc A
    J Hazard Mater; 2005 Mar; 119(1-3):167-74. PubMed ID: 15752862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxypropyl-beta-cyclodextrin enhanced electrokinetic remediation of sediment contaminated with HCB and heavy metals.
    Li T; Yuan S; Wan J; Lu X
    J Hazard Mater; 2010 Apr; 176(1-3):306-12. PubMed ID: 19962239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior of zinc, nickel, copper and cadmium during the electrokinetic remediation of sediment from the Great Backa Canal (Serbia).
    Rajic LM; Dalmacija BD; Trickovic JS; Dalmacija MB; Krcmar DM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Jan; 45(9):1134-43. PubMed ID: 20574868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.