These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15721549)

  • 21. Adsorption behavior of 2,4-dichlorophenol and pentachlorophenol in an allophanic soil.
    Cea M; Seaman JC; Jara AA; Fuentes B; Mora ML; Diez MC
    Chemosphere; 2007 Apr; 67(7):1354-60. PubMed ID: 17217987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Singlet molecular oxygen application for 2-chlorophenol removal.
    Gryglik D; Miller JS; Ledakowicz S
    J Hazard Mater; 2007 Jul; 146(3):502-7. PubMed ID: 17513046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using the dual-mode model to describe adsorption of organic pollutants onto an organoclay.
    Gonen Y; Rytwo G
    J Colloid Interface Sci; 2006 Jul; 299(1):95-101. PubMed ID: 16554062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material.
    Singh KP; Malik A; Sinha S; Ojha P
    J Hazard Mater; 2008 Feb; 150(3):626-41. PubMed ID: 17582681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of novel activated carbons from H2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol.
    Wu FC; Wu PH; Tseng RL; Juang RS
    J Environ Manage; 2011 Mar; 92(3):708-13. PubMed ID: 21075503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit.
    Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H
    Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorptive behavior of chlorophenols on river volcanic sediment.
    Domínguez VM; Martínez M; Vidal G
    Bull Environ Contam Toxicol; 2004 Sep; 73(3):519-26. PubMed ID: 15386174
    [No Abstract]   [Full Text] [Related]  

  • 28. Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics.
    Luo Q; Zhang X; Wang H; Qian Y
    Chemosphere; 2005 Jun; 59(9):1289-98. PubMed ID: 15857640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: isotherms, kinetics and thermodynamics.
    Wu J; Yu HQ
    J Hazard Mater; 2006 Sep; 137(1):498-508. PubMed ID: 16621252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioregeneration of granular activated carbon in simultaneous adsorption and biodegradation of chlorophenols.
    Oh WD; Lim PE; Seng CE; Sujari AN
    Bioresour Technol; 2011 Oct; 102(20):9497-502. PubMed ID: 21871793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of adsorption equilibrium of volatile chlorinated organic compounds to dry soil.
    Kobayashi T; Shimizu Y; Urano K
    J Hazard Mater; 2004 Apr; 108(1-2):69-75. PubMed ID: 15081164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics.
    Sahinkaya E; Dilek FB
    Biodegradation; 2007 Aug; 18(4):427-37. PubMed ID: 17091347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of chlorophenols in aqueous solution by carbon black low-cost adsorbents. Equilibrium study and influence of operation conditions.
    Domínguez-Vargas JR; Navarro-Rodríguez JA; de Heredia JB; Cuerda-Correa EM
    J Hazard Mater; 2009 Sep; 169(1-3):302-8. PubMed ID: 19403238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.
    Aktaş O; Ceçen F
    J Hazard Mater; 2007 Mar; 141(3):769-77. PubMed ID: 16945482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of adsorption characteristics of 2,4-dichlorophenol from aqueous solutions by activated carbon fiber.
    Wang JP; Feng HM; Yu HQ
    J Hazard Mater; 2007 Jun; 144(1-2):200-7. PubMed ID: 17118548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite.
    Xu N; Christodoulatos C; Braida W
    Chemosphere; 2006 Aug; 64(8):1325-33. PubMed ID: 16466766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Desorption of cadmium from goethite: effects of pH, temperature and aging.
    Mustafa G; Kookana RS; Singh B
    Chemosphere; 2006 Jul; 64(5):856-65. PubMed ID: 16330070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of biogenic substrate concentration on the performance of sequencing batch reactor treating 4-CP and 2,4-DCP mixtures.
    Sahinkaya E; Dilek FB
    J Hazard Mater; 2006 Feb; 128(2-3):258-64. PubMed ID: 16157449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regeneration of ortho-chlorophenol-exhausted activated carbons with liquid water at high pressure and temperature.
    Rivera-Utrilla J; Ferro-García MA; Bautista-Toledo I; Sánchez-Jiménez C; Salvador F; Merchán MD
    Water Res; 2003 Apr; 37(8):1905-11. PubMed ID: 12697233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wet peroxide oxidation of chlorophenols.
    García-Molina V; López-Arias M; Florczyk M; Chamarro E; Esplugas S
    Water Res; 2005 Mar; 39(5):795-802. PubMed ID: 15743624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.