These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 15721596)
1. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Suzuki K; Shiraishi J; Abe H; MacMahon H; Doi K Acad Radiol; 2005 Feb; 12(2):191-201. PubMed ID: 15721596 [TBL] [Abstract][Full Text] [Related]
2. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Suzuki K; Armato SG; Li F; Sone S; Doi K Med Phys; 2003 Jul; 30(7):1602-17. PubMed ID: 12906178 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. Suzuki K; Li F; Sone S; Doi K IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352 [TBL] [Abstract][Full Text] [Related]
4. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). Suzuki K; Abe H; MacMahon H; Doi K IEEE Trans Med Imaging; 2006 Apr; 25(4):406-16. PubMed ID: 16608057 [TBL] [Abstract][Full Text] [Related]
5. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Suzuki K; Doi K Acad Radiol; 2005 Oct; 12(10):1333-41. PubMed ID: 16179210 [TBL] [Abstract][Full Text] [Related]
6. A new method based on MTANNs for cutting down false-positives: an evaluation on different versions of commercial pulmonary nodule detection CAD software. Shi Z; Si C; Feng Y; He L; Suzuki K Biomed Mater Eng; 2014; 24(6):2839-46. PubMed ID: 25226989 [TBL] [Abstract][Full Text] [Related]
7. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Shiraishi J; Li Q; Suzuki K; Engelmann R; Doi K Med Phys; 2006 Jul; 33(7):2642-53. PubMed ID: 16898468 [TBL] [Abstract][Full Text] [Related]
8. A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Suzuki K Phys Med Biol; 2009 Sep; 54(18):S31-45. PubMed ID: 19687563 [TBL] [Abstract][Full Text] [Related]
9. Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes. Suzuki K; Yoshida H; Näppi J; Dachman AH Med Phys; 2006 Oct; 33(10):3814-24. PubMed ID: 17089846 [TBL] [Abstract][Full Text] [Related]
10. Computer-aided diagnosis for improved detection of lung nodules by use of posterior-anterior and lateral chest radiographs. Shiraishi J; Li F; Doi K Acad Radiol; 2007 Jan; 14(1):28-37. PubMed ID: 17178363 [TBL] [Abstract][Full Text] [Related]
11. Reduction of false positives in computerized detection of lung nodules in chest radiographs using artificial neural networks, discriminant analysis, and a rule-based scheme. Wu YC; Doi K; Giger ML; Metz CE; Zhang W J Digit Imaging; 1994 Nov; 7(4):196-207. PubMed ID: 7858017 [TBL] [Abstract][Full Text] [Related]
12. Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Suzuki K; Yoshida H; Näppi J; Armato SG; Dachman AH Med Phys; 2008 Feb; 35(2):694-703. PubMed ID: 18383691 [TBL] [Abstract][Full Text] [Related]
13. Development of an improved CAD scheme for automated detection of lung nodules in digital chest images. Xu XW; Doi K; Kobayashi T; MacMahon H; Giger ML Med Phys; 1997 Sep; 24(9):1395-403. PubMed ID: 9304567 [TBL] [Abstract][Full Text] [Related]
14. Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography. Suzuki K; Zhang J; Xu J IEEE Trans Med Imaging; 2010 Nov; 29(11):1907-17. PubMed ID: 20570766 [TBL] [Abstract][Full Text] [Related]
15. Computerized detection of lung nodules by means of "virtual dual-energy" radiography. Chen S; Suzuki K IEEE Trans Biomed Eng; 2013 Feb; 60(2):369-78. PubMed ID: 23193306 [TBL] [Abstract][Full Text] [Related]
16. A computerized scheme for lung nodule detection in multiprojection chest radiography. Guo W; Li Q; Boyce SJ; McAdams HP; Shiraishi J; Doi K; Samei E Med Phys; 2012 Apr; 39(4):2001-12. PubMed ID: 22482621 [TBL] [Abstract][Full Text] [Related]
17. Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Arimura H; Katsuragawa S; Suzuki K; Li F; Shiraishi J; Sone S; Doi K Acad Radiol; 2004 Jun; 11(6):617-29. PubMed ID: 15172364 [TBL] [Abstract][Full Text] [Related]
18. CT colonography: advanced computer-aided detection scheme utilizing MTANNs for detection of "missed" polyps in a multicenter clinical trial. Suzuki K; Rockey DC; Dachman AH Med Phys; 2010 Jan; 37(1):12-21. PubMed ID: 20175461 [TBL] [Abstract][Full Text] [Related]
19. A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Schilham AM; van Ginneken B; Loog M Med Image Anal; 2006 Apr; 10(2):247-58. PubMed ID: 16293441 [TBL] [Abstract][Full Text] [Related]
20. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. Sim Y; Chung MJ; Kotter E; Yune S; Kim M; Do S; Han K; Kim H; Yang S; Lee DJ; Choi BW Radiology; 2020 Jan; 294(1):199-209. PubMed ID: 31714194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]