These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15721652)

  • 1. Lead field computation for the electrocardiographic inverse problem--finite elements versus boundary elements.
    Seger M; Fischer G; Modre R; Messnarz B; Hanser F; Tilg B
    Comput Methods Programs Biomed; 2005 Mar; 77(3):241-52. PubMed ID: 15721652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On modeling the Wilson terminal in the boundary and finite element method.
    Fischer G; Tilg B; Modre R; Hanser F; Messnarz B; Wach P
    IEEE Trans Biomed Eng; 2002 Mar; 49(3):217-24. PubMed ID: 11876286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boundary element computations in the forward and inverse problems of electrocardiography: comparison of collocation and Galerkin weightings.
    Stenroos M; Haueisen J
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2124-33. PubMed ID: 18713681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bidomain model based BEM-FEM coupling formulation for anisotropic cardiac tissue.
    Fischer G; Tilg B; Modre R; Huiskamp GJ; Fetzer J; Rucker W; Wach P
    Ann Biomed Eng; 2000; 28(10):1229-43. PubMed ID: 11144984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The computational performance of a high-order coupled FEM/BEM procedure in electropotential problems.
    Bradley CP; Harris GM; Pullan AJ
    IEEE Trans Biomed Eng; 2001 Nov; 48(11):1238-50. PubMed ID: 11686623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study.
    Klepfer RN; Johnson CR; Macleod RS
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter.
    Berrier KL; Sorensen DC; Khoury DS
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):507-15. PubMed ID: 15000381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-order coupled finite element/boundary element torso model.
    Pullan A
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):292-8. PubMed ID: 8682541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac anisotropy: is it negligible regarding noninvasive activation time imaging?
    Modre R; Seger M; Fischer G; Hintermüller C; Hayn D; Pfeifer B; Hanser F; Schreier G; Tilg B
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):569-80. PubMed ID: 16602563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D electrical impedance tomography for piecewise constant domains with known internal boundaries.
    Babaeizadeh S; Brooks DH; Isaacson D
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):2-10. PubMed ID: 17260850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Tang M
    Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving the ECG forward problem by means of standard h- and h-hierarchical adaptive linear boundary element method: comparison with two refinement schemes.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2009 May; 56(5):1454-64. PubMed ID: 19272882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of errors in assumed conductivities and geometry on numerical solutions to the inverse problem of electrocardiography.
    Throne RD; Olson LG
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1192-200. PubMed ID: 8550061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling mass analyzer performance with fields determined using the boundary element method.
    Gibson JR; Evans KG; Taylor S
    J Mass Spectrom; 2010 Apr; 45(4):364-71. PubMed ID: 20198605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cardiac motion on body surface electrocardiographic potentials: an MRI-based simulation study.
    Wei Q; Liu F; Appleton B; Xia L; Liu N; Wilson S; Riley R; Strugnel W; Slaughter R; Denman R; Crozier S
    Phys Med Biol; 2006 Jul; 51(14):3405-18. PubMed ID: 16825739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
    Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS
    Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assessment of variable thickness and fiber orientation of the skeletal muscle layer on electrocardiographic calculations.
    Stanley PC; Pilkington TC; Morrow MN; Ideker RE
    IEEE Trans Biomed Eng; 1991 Nov; 38(11):1069-76. PubMed ID: 1748441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.