These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 15721750)

  • 21. Reactivation of ocular dominance plasticity in the adult visual cortex.
    Pizzorusso T; Medini P; Berardi N; Chierzi S; Fawcett JW; Maffei L
    Science; 2002 Nov; 298(5596):1248-51. PubMed ID: 12424383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity.
    Di Cristo G; Chattopadhyaya B; Kuhlman SJ; Fu Y; Bélanger MC; Wu CZ; Rutishauser U; Maffei L; Huang ZJ
    Nat Neurosci; 2007 Dec; 10(12):1569-77. PubMed ID: 18026099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical imaging in cat area 18: strabismus does not enhance the segregation of ocular dominance domains.
    Schmidt KF; Löwel S
    Neuroimage; 2006 Jan; 29(2):439-45. PubMed ID: 16125976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experience-dependent binocular competition in the visual cortex begins at eye opening.
    Smith SL; Trachtenberg JT
    Nat Neurosci; 2007 Mar; 10(3):370-5. PubMed ID: 17293862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB.
    Pham TA; Graham SJ; Suzuki S; Barco A; Kandel ER; Gordon B; Lickey ME
    Learn Mem; 2004; 11(6):738-47. PubMed ID: 15537732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex.
    Yang Y; Fischer QS; Zhang Y; Baumgärtel K; Mansuy IM; Daw NW
    Nat Neurosci; 2005 Jun; 8(6):791-6. PubMed ID: 15880107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experience-dependent orientation plasticity in the visual cortex of rats chronically exposed to a single orientation.
    O'Hashi K; Miyashita M; Tanaka S
    Neurosci Res; 2007 May; 58(1):86-90. PubMed ID: 17300846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlated binocular activity guides recovery from monocular deprivation.
    Kind PC; Mitchell DE; Ahmed B; Blakemore C; Bonhoeffer T; Sengpiel F
    Nature; 2002 Mar; 416(6879):430-3. PubMed ID: 11919632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex.
    Beaver CJ; Ji Q; Fischer QS; Daw NW
    Nat Neurosci; 2001 Feb; 4(2):159-63. PubMed ID: 11175876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ocular dominance columns in V1 are more susceptible than associated callosal patches to imbalance of eye input during precritical and critical periods.
    Olavarria JF; Laing RJ; Andelin AK
    J Comp Neurol; 2021 Aug; 529(11):2883-2910. PubMed ID: 33683706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A rich environmental experience reactivates visual cortex plasticity in aged rats.
    Scali M; Baroncelli L; Cenni MC; Sale A; Maffei L
    Exp Gerontol; 2012 Apr; 47(4):337-41. PubMed ID: 22329907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-dependent decline in supragranular long-term synaptic plasticity by increased inhibition during the critical period in the rat primary visual cortex.
    Jang HJ; Cho KH; Kim HS; Hahn SJ; Kim MS; Rhie DJ
    J Neurophysiol; 2009 Jan; 101(1):269-75. PubMed ID: 18971296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monocular cells without ocular dominance columns.
    Adams DL; Horton JC
    J Neurophysiol; 2006 Nov; 96(5):2253-64. PubMed ID: 16855115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical-period plasticity in the visual cortex.
    Levelt CN; Hübener M
    Annu Rev Neurosci; 2012; 35():309-30. PubMed ID: 22462544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of binocular competition on the expression profiles of CRMP2, CRMP4, Dyn I, and Syt I in developing cat visual cortex.
    Cnops L; Hu TT; Burnat K; Arckens L
    Cereb Cortex; 2008 May; 18(5):1221-31. PubMed ID: 17951599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H; Tani T; Tanaka S
    Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age- and experience-dependent expression of dynamin I and synaptotagmin I in cat visual system.
    Cnops L; Hu TT; Vanden Broeck J; Burnat K; Van Den Bergh G; Arckens L
    J Comp Neurol; 2007 Sep; 504(3):254-64. PubMed ID: 17640048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple periods of functional ocular dominance plasticity in mouse visual cortex.
    Tagawa Y; Kanold PO; Majdan M; Shatz CJ
    Nat Neurosci; 2005 Mar; 8(3):380-8. PubMed ID: 15723060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical period for inhibitory plasticity in rodent binocular V1.
    Maffei A; Lambo ME; Turrigiano GG
    J Neurosci; 2010 Mar; 30(9):3304-9. PubMed ID: 20203190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.